
Testing Solutions through SysML / UML
Dave Richards

Artisan Software Tools

Suite 701, Eagle Tower

Montpelier Drive

Cheltenham, UK, GL50 1TA

Dave.Richards@artisansoftwaretools.com

Andrew Stuart

Westinghouse Rail Systems Ltd

PO Box 79

Pew Hill, Langley Park

Chippenham, Wiltshire, SN15 1JD, UK

Andrew.Stuart@wrsl.com

Matthew Hause

Artisan Software Tools

Suite 701, Eagle Tower

Montpelier Drive

Cheltenham, UK, GL50 1TA

Matthew.Hause@artisansoftwaretools.com

Copyright © 2009 by Matthew Hause. Published and used by INCOSE with permission.

Abstract. As systems become increasingly complex and the time to market decreases, systems

engineers have to develop novel solutions to testing. The scenario is particularly acute when

dealing within the safety critical domain. This paper will seek to highlight how UML and in

particular, improvements introduced by SysML can aid the testing process in terms of

verification, validation and simulation of software, firmware and mechanical systems. This paper

will highlight how UML and SysML constructs can aid testing and is based on many years

experience of building and testing systems as well as the experience gained by client companies

during consultation. It will highlight on a practical basis how clients have integrated testing into

their UML/SysML models to improve their processes and products.

Introduction
The UML is the de facto standard for software development, and allows the user to model

their system in terms of structural analysis through class, package, composite structure, object,

component, and deployment diagrams. UML also allows the user to model the behavior of a

system through state machine, activity, use case, sequence, communication, timing, and

interaction overview diagrams. While UML could be used to model systems SysML can more

effectively aid the understanding of structure of a system through block definition, package,

internal block, instance, parametric, and requirement diagrams. System behavior can further be

enlightened investigated and illuminated through state, activity, use case, and sequence

diagrams. In particular the use of SysML notation aids the Systems Engineer in construction of

systems, system integration and unit tests, as well as providing critical system performance

details needed in the handover to software engineers. If we look at each one of these diagrams in

turn we can understand what benefits each holds for the Systems Engineer when designing a

testable system. See OMG (2007b) for the SysML specification, Hause (2006a) for a summary,

and Friedenthal et al (2008), Korff (2008), and Holt (2008) for books on SysML.

Requirements Diagram. The requirements diagram within SysML is a cross cutting construct

that allows the system designer to both document system requirements and show the

interrelationship that exist between requirements, e.g. refine, verify, satisfy, test case, etc. and

other system artifacts (Hause, 2006b).

mailto:Dave.Richards@artisansoftwaretools.com
mailto:Andrew.Stuart@wrsl.com
mailto:Matthew.Hause@artisansoftwaretools.com

The Safety Integrity Level (SIL) concept was created in order to quantify the safety requirements

of a specific components or set of components in a safety related system (IEC, 2002).

Specifically, a SIL is the indicator of the likelihood of meeting required safety features. When

we are developing a safety critical system, say to SIL 3, a key requirement is to have full

requirements coverage. The requirements diagram can be used not just by the Systems Engineer

but by the organization as a whole to model their requirements. The requirements diagram may

model requirements from the business case requirements, which could then drive functional

requirements that subsequently could be constrained or extended by non-functional

requirements. In the latter case we could be specifying an implementation or tool chain. In

Figure 1, we see a typical example of a requirements diagram. Note we can link to and exhibit

test cases and indicate that a requirement can be verified. In fact the highlighted «test Case»

model element “[Package] Maintain Speed - with flows, is in fact a Sequence diagram, from

which we can automatically generate code for test sequences.

Figure 1. Requirements Diagram with Test Annotations

Activity Diagram. The activity diagram allows low level behavioral modeling of a system. The

introduction of <<discrete>>, <<continuous>>, <<nobuffer>>, and <<overwrite>> allows the

developer to indicate more precisely the desired behavior of the system. For instance if an object

node had <<nobuffer>> applied, and this object node was an interface to a driver which did not

have the ability to buffer incoming serial data, a test case could be derived that would exercise

the system where the driver had failed to clear the incoming data fast enough. The system

engineer would verify whether the system could gracefully recover from such a scenario. Equally

we can model an activity edge as either continuous or discrete, and thus derive a more accurate

test case in terms of data input / output characteristics. Another scenario where the activity

diagram is helpful to system engineers is within destructive wear tests designed to determine

when systems fail during extended use. If we apply a probability to an activity edge and then

perform an analysis, say, adding a budget stereotype to a physical item associated with the

activity, and then perform an analysis of the output, weak points can be identified within the

system. You can describe product tests using actions like “open and close the furniture door until

the junctions break and count the open action. The test is passed if count is greater than 50000”.

Finally, when looking at the low level detail we may be concerned about whether our system

properly processes interrupts. By the inclusion of an interruptible region within the activity

diagram we can design a test that will ensure that the system recovers from an interrupt

gracefully. An example is given in Figure 2.

region

boundary

interrupting event

interrupting

edge

Figure 2. Activity Diagram with Interruptible Region

Block Diagrams. The logical and physical structural characteristics of system are defined using

the Block Definition Diagram (BDD) and the Internal Block Diagram (IBD). Both are of great

use to the system tester. A BDD for a Cruise Control System is shown in Figure 3.

Figure 3. Block Definition Diagram

We can examine the parts of the system that we may wish to test in isolation, and what

components interact for an integration test. The block definition diagram lends itself to express

real world systems through the rich set of semantics. Looking at the BDD for the Cruise Control

unit we see that we may express specialization, composition and associations in an easy to

understand format.

While useful in capturing high level detail, the system engineer may wish to provide details

about the internal construction e.g. what items are placed on to what buses. The Internal Block

Diagram (IBD) can address this issue. An example of this is given in Figure 4. The IBD helps the

system engineer to model flow ports, standard ports, standard and required interfaces and the

nature of the system interactions. Furthermore, as we add more details to the data model, e.g. in

the software design, the bit positions, most significant bit (MSB), least significant bit (LSB), then

it is possible to directly generate Interface Control or Interface Definition documents (ICD, IDD)

information that can be used as a basis for tests between sub system to sub system or between

systems and software.

Figure 4. Internal Block Diagram

Parametric Diagrams. We have so far shown how we can model the interaction of parts that

constitute a system in terms of the relationships of physical and logical interfaces. However the

parts may also have constraints attached to them. This notation is a specialized IBD and allows

the systems engineer to develop rule based specifications in terms of mathematical equations that

represent the system behavioral, performance or other constraints. An example is shown in

Figure 5. The parametric diagram shows inputs and outputs in terms of value types and the

associated mathematical equation. Given this proviso it is possible to then develop black box

tests that exercise inputs, in terms of their conceptual representation, say range, domain and

value, and outputs that will exercise the equation encapsulating the constraint.

par [block] Vehicle [2]

Vehicle.AccEq : Acceleration
Equation

constraints
{F = m * a}

a
F

m

Vehicle.BrkFrcEq : Braking Force
Equation

constraints
{f = (tf * bf) * (1 - tl)}

bf

f

tf
tl

Vehicle.DistEq : Distance Equation

constraints
{v = dx / dt}

t

v

x

Vehicle.VelEq : Velocity Equation

constraints
{a = dv / dt}

a
t

v

Vehicle.ChasSys.-
RFTire.Frctn :

Friction

Vehicle.BrakeSys.Rtr.-
BrakingForce : Force

Vehicle.BrakeSys.ABS.-
Duty Cycle : Duty Cycle

Vehicle.Mass : kg

Vehicle.Posn :
Position

{F = m * a}

Figure 5. Parametric Block Diagram

Allocation. While the BDD and IBD provide a visual representation of the system under

construction they are also useful for understanding the allocation of parts within the system.

Understanding allocation helps the tester identify the inter relationships between functionality,

requirements and other blocks as different perspectives of the same system. An example is given

in Figure 6. The SetSpeed block is allocated to the SetSpeed operation and SetSpeed part has

been allocated from CruiseControlIO.

Figure 6. Allocation of concerns.

Summary. SysML introduces a number of new diagrams, constructs and semantics that help the

system engineer in designing a testable system from the outset. When we design a system for test

there are numerous factors that have to be taken into account, from clear dissemination of

concerns, to specifying clear and well understood interfaces. Consequently ICD documentation

can automatically generate a basis for system integration tests. If we choose from the outset to

specify a system using SysML we can naturally then express software in the form of UML. From

here test cases, code, and the accompanying documentation may be generated. Taking this

approach reveals a flexible system which also reduces verification and validation costs. We have

shown that in each stage of systems engineering we may use the SysML to design a more

testable system and that at every stage from system conception to ironing out the detail at the low

level interface SysML is the key element in the systems engineering toolkit. Examples of how

this has been achieved in industry will now be highlighted.

Case Studies

Rail Signaling System Test. Within the European rail domain, software is developed according

to EN 50126, Railway Applications: The Specification and Demonstration of Dependability -

Reliability, Availability, Maintainability and Safety (RAMS). This is used in conjunction with

EN 50129 Railway Applications: Safety related electronic systems for signaling, and EN 50128

Railway Applications: Software for Railway Control and Protection Systems. These norms have

been created by CENELEC (Comité Européen de Normalisation Électrotechnique), and therefore

are often referred to as “CENELEC-norms” in the rail domain. In this example, we look at the

deployment of a Radio Block Control (RBC) for the European Rail Traffic Management System

(ERTMS) Malaga line. The RBC is responsible for continuous speed supervision and movement

authority of the train. The train uses Eurobalises to determine the Train Location and sends it to

the RBC. Eurobalises are track mounted devices that operate on transponder technology. The

balise transmits information to the train, such as: location of the balise; the geometry of the line,

such as curves, gradients and speed limits; and the position of any signals. Balises are typically

deployed in pairs so that the train can determine its direction of travel A->B from direction B-

>A. The Interlock authorizes and gives proceed authorization to the RBC to allow train

movement. The RBC is categorized as a SIL 4 product. This scenario is shown in Figure 7. One

aspect of system validation requires the analysis of all possible execution sequences in order to

gain full test coverage.

Figure 7 RBC Validation Scenario

Traditional approach to performing RBC Validation. In the approach illustrated in Figure 8,

the System Requirements Specification (SRS) was modeled in a UML Use Case model within

Artisan Studio. Design and analysis work continued within Studio and were expressed in terms

of UML State and Sequence Diagrams. As Studio provides an OLE interface, an in-house tool

was developed that allowed the construction of flow charts from the State and Sequence

Diagrams that captured all possible execution paths. The information was then exported in the

form of a spreadsheet. The validation team then generated test case SDs that exercise the system.

The validation team identified which paths are valid and generated test cases for these, which

paths are impossible to run, and which paths are incompatible. Only paths that are valid had test

case SDs generated. With the test case SD constructed within Studio, it was possible to develop a

custom code generator that interlinked into the Studio model. In this instance Python scripting

language was chosen to exercise the system under test (SUT). The Python script exercised the

system under test on both a simulated PC platform and/or on a physical test rig. Finally test

report documentation was constructed and presented to the Railway Authority as certification

evidence. While this overall approach was more efficient - all valid paths of the product are

exercised, it did have the drawback of not being very flexible if the original UML test model

elements such as state diagrams and sequence diagrams changed.

There is a solution to this issue, namely Automated Validation.

WRSL RBC VALIDATION

RBC UML MODEL

FLOWCHART

DIAGRAM

MODEL

FlowChart Tool

Model Analysis

Automatic

Generation

All

Possible

paths *.xls

files

Path Functional

Analysis

Valid Functional

Path *.xls files

Traceabilty

Test case OSD
Report

Documentation

Run Test Against

RBC
Validation Team

Figure 8 Traditional RBC Validation

RBC Automated Validation. The automated validation approach is outlined within Figure 9.

RBC UML MODEL

FLOW CHART

DIAGRAM

MODEL

AUTOMATIC

TOOL - MODEL

ANALYSIS

FUNCTIONAL

PATH ANALYSIS

REPORT

DOCUMENTATION

AUTOMATIC TOOL –

DOCUMENT

GENERATION

RUN TEST

AGAINST RBC

TEST CASE

OSDs

VALIDATION

TEAM

All

Possible

paths *.xls

files

Figure 9 Automated RBC Validation

The main objectives of the automated validation process are:

1) Eliminate the amount of manual work.

The excel files are created automatically. This information was included as evidence.

2) Reduce human factor influence (human errors) in validation.

Originally these files were hand-coded.

3) Decrease the number of files used in the validation process.

4) Enforce design standards.

The tool integration for this process is shown in Figure 10. The Visual BASIC DLL reader

imports information from the Artisan Studio model via the OLE interface, namely SDs and State

Diagrams. Information contained within SDs includes text, sequence order and links in steps. For

State Diagrams, levels in diagrams, State Transitions, input /output functions and text are

imported. The Visual .NET control application manages the imported information and creates

flowcharts and state diagram representations. The control application tool analyzes this

information to provide all possible execution paths, but also allows the user to modify the paths

created by allowing the addition of steps, states, transactions etc. Incompatible paths can be

detected as guided by the user. As the lifecycle of the project progresses, different versions of the

diagrams can be compared for changes. Finally the application automatically produces validation

documentation. Thus at this stage our workflow amounts to the validator analyzing execution

paths in a graphical manner. This process produces a 'possible paths.xls' spreadsheet and

documentation templates that include the steps executed in the test case. Finally the design

standard for model construction is enforced as the control application tool compares the SD and

State Diagram construction against the accepted quality standard, e.g. conditional expressions

within the SD defined since UML 2.0 using fragments.

Artisan UML to Flowchart Analysis and Management tool.

UML
ARTISAN
MODEL

DIAGRAMS

VISUAL BASIC DLL
READER

Functions:
-IMPORT
INFORMATION

VISUAL.NET

CONTROL
APPLICATION TOOL

Functions:
•MANAGE OBTAINED
INFORMATION.
•CREATE
FLOWCHARTS
•OBTAIN ALL PATHS
•CREATE/MODIFY

FLOWCHARTS
MANUALLY
•GENERATE *.xls,
*.doc DOCUMENTS
•COMPARE
DIFFERENT DIAGRAM
VERSIONS AND
ASSIGN INFO

FLOWCHART *.CTF
FILE

-Diagram

representation
-All Paths

information

USER

MANUAL
OPERATIONS

POSSIBLE
PATHS *.xls

STS TEMPLATE
*.doc

FLOWCHART *.CTF
FILEFLOWCHART *.CTF

FILE
FLOWCHART *.CTF

FILE

OLD
VERSION

FLOWCHART
*.CTF FILE

NEW
VERSION

FLOWCHART
*.CTF FILE

Figure 10. RBC Tool Integration

Most important of all, the adoption of this process has led to a decrease of about 75% in the cost

of validation of this SIL 4 product. This demonstrates a significant return on investment (ROI)

for this approach to model-based testing.

Automotive Model Based System Test. Often within the automotive industry a standard

application is deployed on a different number of target platforms. Traditional systems would

require extensive testing for each of these platforms, often carried out by hand. This is time

consuming and subject to significant delays and re-analysis should alterations be introduced

when testing has commenced. There is a solution to this problem though: Model Driven

Development with automatic test script production. So the same principles for model based

software development are used for test script generation. An overview of the platform

independent modeling system is shown in Figure 11.

Interface

Description

Testdesign
Code-Generation

Test Scripts

Test Bench

Interfaces
Mapping Call

Figure 11 Automotive Platform Independent System Test.

The system produces, administers and executes the test scripts. The system as a whole exercises

Hardware In the Loop (HIL) testing. Testing breaks down into 3 stages.

1) Model the test case, i.e. create the test case, define the parameters for the test, and model the

test sequence.

a. Test Cases are derived from Use Cases (usually black box, but not always)

b. White box Test Cases can be derived (deduced) from Activity Diagrams

c. Test Scripts can be derived from both Activity and (more often) Sequence Diagrams

2) Automatically generate the test case, through a code generator based on model content.

3) Execute the test on the test rig, capture results and then automatically produce test results

documentation.

Figure 11 shows a high level view of the components. The test bench shown in Figure 12

provides a configurable remote test model of the car. The interface to the RTOS and application

under test is through predefined standard test interfaces.

Test Bench

Real-time Computer

Car Simulation
Signals

Parameters

Real-time OS Signals

scripts

SuT

Application System
scripts

Scripting IF

- Load, Start and Stop Car Simulations

- Read Signals

Manipulate the

simulation behavior by

changing parameters

Figure 12 Testbench Overview

The test sequences are defined in UML Sequence Diagrams and are platform independent this is

possible due to the fact that the test library contains the operations of the actual test equipments

used and their abstracted functionality modeled as interfaces. These interfaces are used in the test

sequences, thus allowing the mapping of the test to the equipment to be used separately. The test

bench computer interacts with the test bench, as per Figure 13. The shown dependencies depict

the fact that the mapping between variables used in the test descriptions and the parameters and

signals of the simulation are pragmatically realized using name matching. The test function

library holds drivers that communicate with the relevant platform.

Test Bench

Real-time Computer

Car Simulation

Signals

Parameters

Real-time OS
Signals scripts

SuT

Application System scripts

Test Bench Computer

Test System

Test Cases

Variable Mappings

Test Function Library

Reporting System

Scripting IF

STRD Testbench Tool Interaction

Figure 13 Testbench Tool Interaction

While we have highlighted the functional components, we need to understand how data flows

through our system. This will also serve to highlight tool integration. This is highlighted in

Figure 14. The central component within this test system is the Artisan Studio repository. Studio

allows an XML export of the test case design. This has two purposes. Firstly, XML serves as an

input to a code generator, python in this case. It also provides a base for the documentation of the

test cases. Using a model driven approach simplifies the test case generation and allows the

validator to concentrate on the goal of the test case as opposed to being caught up with the

implementation details. As an alternative, the production of XML can be omitted, resulting in a

better performance when generating the test scripts directly from the model. This was done in a

second phase of the project

Mapping/Driver

(HIL-specific)

Test Function
Libraries

Test Function
Libraries

Test Design

V
is

u
a

li
s
ie

ru
n

g

T
e

s
ts

ta
tu

s

V
is

u
a

li
s

a
ti

o
n

T
e

s
t

S
ta

tu
s

CodegeneratorCode Generator Test RunTest Run

Test ProtocolsTest Protocols

Protocol Pool

Test Sequences
Parameter Sets
(Target-Code)

Test Sequences
Parameter Sets
(Target-Code)

T
e

s
tk

o
m

p
o

s
it

io
n

T
e

s
t

C
o

m
p

o
s

it
io

n

Test3
Test2

Test1

Test3
Test2

Test1
Test Sequences,
Parameter Sets

(XML-Metaformat)

X
M

L
-E

x
p

o
rt

X
M

L
-E

x
p

o
rt

Reference

Call

Import

CASE-

Tool

Figure 14. Automotive Tool Integration and Workflow

As a summary, figure 15 shows how the test scripts formerly produced manually by the testers

are abstracted in the model-based test design. The scripts contain all levels of information, from

the test strategy to the very specific access to different elements of the test bench. In the models,

there are explicit perspectives for these levels. Use Cases manage the test cases and allow the

combination of test parameters and test sequences, both of which are modeled using UML

interaction modeling. The test infrastructure is described using the UML class model, which

contains the ability to abstract each equipment type to the relevant service it provides for a test.

The automated test script generation compiles the tests from the use case, i.e. test management

level, the interaction model, i.e. the test sequences and parameters and the description of the test

infrastructure into many low level test scripts, which can be run in the test automation

infrastructure automatically.

Model-based Test Design

Test Design using UML

Use Cases

Classes

Sequences

Objects

Interfaces

Test Environment

Test Scripts

Test Bench Computer

Test Bench

TB Interface

1..*
1

Test Cases

1..*

1

Test Infrastructure

1..*

1

Test Sequences

*

1

Test Parameters

*

1

runs

Code Generation

describes

Figure 15. Description of Automotive Model-based Testing

Overall using a model driven test approach decreases the amount of human interaction, and

probability of human error, while still allowing the validator to focus on the task at hand. This

leads to more efficient and flexible system that can be reused as new products and interfaces are

introduced.

Remark on standards for Model-based Testing

Since 2005, there is a OMG standard profile available for modeling test, called the UML 2

Testing Profile (U2TP). In general, both case studies used the same or a similar approach like the

one supported by U2TP, but without explicitly using this profile. Since SysML and also the

U2TP are based both on UML 2.0, systems modeling and test modeling using U2TP can be used

combined in one model. The SyML stereotype «testCase» is compatibly defined to comply with

the same concept in U2TP.

«metaclass»

StructuredClassifier
{Abstract}

«metaclass»

Property

«stereotype»

TestComponent

zone : TestZone [0..1]

«stereotype»

TestContext

arbiter : Arbiter

scheduler : Scheduler

«stereotype»

SUT

«interface»

Arbiter

getVerdict () : Verdict

setVerdict (in v : Verdict)

«interface»

Scheduler

startTestCase ()

finishTestCase (in t : TestComponent)

CreateTestComponent (inout t : TestComponent)

Scheduler ()

meta class Test Architecture

Figure 16: U2TP Test Architecture

A test starts with setting up a test context. This contains an arbiter and a scheduler, which can be

derived from the library elements shown in figure 16. The test case itself is defined in the UML

behavioral model, so it could be a behavior or an operation, like stated in figure 17, showing also

the four different test results. A test can be passed, failed, there could be a test error or the result

is unclear, so there might be an error in the test concept itself.

«metaclass»

Dependency

«stereotype»

TestObjective

«metaclass»

Operation

«metaclass»

Behavior

«stereotype»

TestCase

«Enumeration»

Verdict

pass

fail

error

inconclusive

meta class Test Case and Test Objective

Figure 17: Test Case and Test Objective

The test sequence itself is mainly using a sequence diagram, which in general has three areas:

Test Setup, test run and gain test results. Since sequence diagrams can be structured now, there

are all means available to model even very complicated tests, but leverage the complexity by e.g.

referencing subsequences.

The level of automating test runs is not covered by the U2TP, because it highly depends on the

tool chain used. Examples for successful application of this model-based testing approach in real

projects are shown in the above described case studies. However, it is always good to know that

there is a theoretical basis available for the modeling ideas pragmatically used.

Conclusion. Test „Plans‟ can and should be modeled. The test plans should define the nature and

purpose of the test suite (a collection of test cases). For example Basis Path or Coverage Testing

Plans (usually white box) should specify (or model) the arcs and nodes (paths and modules)

traversed and exercised by the suite. Parametrics can also be specified (and modeled) in terms of

input-parameter-to-output-results tuples and automatically verified within the model itself (or an

external script). The logical progression of:

Test Plan (and models) to,

Test Suite(s) (and models) to,

Test Case(s) (and models) to,

Test Scripts (and models) is in and of itself a “successive refinement” and decomposition process

that lends itself even more naturally to symbolic modeling than do the more typical analysis and

design activities. That is to say it is in actuality easier & more natural to model and build test

plans and suites symbolically than systems and software engineering analysis and design. It also

results in demonstrable ROI.

References
Czarnecki, Eisenecker, Generative Programming: Methods, Tools and Applications, Published

by Addison Wesley.

Friedenthal, S., Moore, A., Steiner, R. Practical Guide to SysML: The Systems Modeling

Language, Morgan Kaufman September 2008

Hamil, Unit Test Frameworks, Published by O‟Reilly.

Hause, M.C., 2006a, The Systems Modeling Language - SysML, Sept 2006, INCOSE EuSEC

Symposium, Edinburgh, 2006 Proceedings.

Hause, M. C., 2006b, Cross-Cutting Concerns and Ergonomic Profiling Using UML/SysML,

INCOSE International Symposium Orlando, Florida, Proceedings.

Holt, J., Simon Perry, S., SysML for Systems Engineering, IET Publications, 2008

IEC, Functional safety and IEC 61508 A basic guide, November 2002, The International

Electrotechnical Commission (IEC) available online from

http://www.iee.org/oncomms/pn/functionalsafety/HLD.pdf

Korff, A., Modellierung von eingebetteten Systemen mit UML und SysML, von Spektrum

Akademischer Verlag Taschenbuch - 13. June 2008

Object Management Group (OMG), 2005a, UML Testing Profile for UML 2.0, v1.0, formal/05-

07-07 (full specification)

Object Management Group (OMG), 2005, Military Architecture Framework Request for

Information, Available from www.omg.org. [Accessed April, 2005]

Object Management Group (OMG), 2007a. Unified Modeling Language: Superstructure version

2.1.1 with change bars ptc/2007-02-03. [online] Available from: http://www.omg.org

[Accessed September 2007].

OMG Systems Modeling Language (OMG SysML™), V1.0, 2007b, OMG Document Number:

formal/2007-09-01, URL: http://www.omg.org/spec/SysML/1.0/PDF, Accessed November,

2007

Steven, Jackson, Brook and Arnold, Systems Engineering: Coping with Complexity Published

by Prentice Hall.

Biography
David Richards, Application Engineer –Artisan Software Tools

David has worked in the Safety Critical domain for 15 years. Starting with financial systems,

and moving to RTOS Operating System development, and successfully completed numerous

consultancy projects in both civil and military aviation as well as rail signaling projects. His

current role includes the specification of tool integration projects as well as sales presentations

and training courses.

Andrew Stuart, R&D Systems Engineer – Westinghouse Rail Systems Ltd

Andrew Stuart has worked as a systems and software engineer on many different safety

critical domain projects for most of his career including rail and avionics.

Matthew Hause, Chief Consultant at Artisan Software Tools

Matthew Hause is Artisan‟s Chief Consulting Engineer, is a member of the OMG SysML

specification team, and the co-chair of the UPDM group. He has been developing real-time

systems for over 30 years. He started out working in the Power Systems Industry, and has been

involved in Process Control, Communications, SCADA, Distributed Control, military systems

and many other areas of real-time systems. His roles have varied from project manager to

developer. His role at Artisan includes mentoring, sales presentations, standards development

and training courses. He has written a series of white papers on project management, Systems

Engineering, architectural modeling and systems development with UML, SysML and

Architectural Frameworks. He has been a regular presenter at INCOSE, the IEEE, BCS, the IET

and other conferences. Matthew studied Electrical Engineering at the University of New Mexico

and Computer Science at the University of Houston, Texas.

