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Abstract. As systems become increasingly complex and the time to market decreases, systems 

engineers have to develop novel solutions to testing. The scenario is particularly acute when 

dealing within the safety critical domain. This paper will seek to highlight how UML and in 

particular, improvements introduced by SysML can aid the testing process in terms of 

verification, validation and simulation of software, firmware and mechanical systems. This paper 

will highlight how UML and SysML constructs can aid testing and is based on many years 

experience of building and testing systems as well as the experience gained by client companies 

during consultation. It will highlight on a practical basis how clients have integrated testing into 

their UML/SysML models to improve their processes and products.  

Introduction 
The UML is the de facto standard for software development, and allows the user to model 

their system in terms of structural analysis through class, package, composite structure, object, 

component, and deployment diagrams. UML also allows the user to model the behavior of a 

system through state machine, activity, use case, sequence, communication, timing, and 

interaction overview diagrams. While UML could be used to model systems SysML can more 

effectively aid the understanding of structure of a system through block definition, package, 

internal block, instance, parametric, and requirement diagrams. System behavior can further be 

enlightened investigated and illuminated through state, activity, use case, and sequence 

diagrams. In particular the use of SysML notation aids the Systems Engineer in construction of 

systems, system integration and unit tests, as well as providing critical system performance 

details needed in the handover to software engineers. If we look at each one of these diagrams in 

turn we can understand what benefits each holds for the Systems Engineer when designing a 

testable system. See OMG (2007b) for the SysML specification, Hause (2006a) for a summary, 

and Friedenthal et al (2008), Korff (2008), and Holt (2008) for books on SysML. 

Requirements Diagram. The requirements diagram within SysML is a cross cutting construct 

that allows the system designer to both document system requirements and show the 

interrelationship that exist between requirements, e.g. refine, verify, satisfy, test case, etc. and 

other system artifacts (Hause, 2006b).  
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The Safety Integrity Level (SIL) concept was created in order to quantify the safety requirements 

of a specific components or set of components in a safety related system (IEC, 2002). 

Specifically, a SIL is the indicator of the likelihood of meeting required safety features. When 

we are developing a safety critical system, say to SIL 3, a key requirement is to have full 

requirements coverage. The requirements diagram can be used not just by the Systems Engineer 

but by the organization as a whole to model their requirements. The requirements diagram may 

model requirements from the business case requirements, which could then drive functional 

requirements that subsequently could be constrained or extended by non-functional 

requirements. In the latter case we could be specifying an implementation or tool chain. In 

Figure 1, we see a typical example of a requirements diagram. Note we can link to and exhibit 

test cases and indicate that a requirement can be verified. In fact the highlighted «test Case» 

model element “[Package] Maintain Speed - with flows, is in fact a Sequence diagram, from 

which we can automatically generate code for test sequences. 

 

Figure 1. Requirements Diagram with Test Annotations 

Activity Diagram. The activity diagram allows low level behavioral modeling of a system. The 

introduction of <<discrete>>, <<continuous>>, <<nobuffer>>, and <<overwrite>> allows the 

developer to indicate more precisely the desired behavior of the system. For instance if an object 

node had <<nobuffer>> applied, and this object node was an interface to a driver which did not 

have the ability to buffer incoming serial data, a test case could be derived that would exercise 

the system where the driver had failed to clear the incoming data fast enough. The system 

engineer would verify whether the system could gracefully recover from such a scenario. Equally 

we can model an activity edge as either continuous or discrete, and thus derive a more accurate 

test case in terms of data input / output characteristics. Another scenario where the activity 

diagram is helpful to system engineers is within destructive wear tests designed to determine 

when systems fail during extended use. If we apply a probability to an activity edge and then 

perform an analysis, say, adding a budget stereotype to a physical item associated with the 



activity, and then perform an analysis of the output, weak points can be identified within the 

system. You can describe product tests using actions like “open and close the furniture door until 

the junctions break and count the open action. The test is passed if count is greater than 50000”. 

Finally, when looking at the low level detail we may be concerned about whether our system 

properly processes interrupts. By the inclusion of an interruptible region within the activity 

diagram we can design a test that will ensure that the system recovers from an interrupt 

gracefully. An example is given in Figure 2. 
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interrupting 

edge

 

Figure 2. Activity Diagram with Interruptible Region 

Block Diagrams. The logical and physical structural characteristics of system are defined using 

the Block Definition Diagram (BDD) and the Internal Block Diagram (IBD). Both are of great 

use to the system tester. A BDD for a Cruise Control System is shown in Figure 3.  

 
Figure 3. Block Definition Diagram 

We can examine the parts of the system that we may wish to test in isolation, and what 

components interact for an integration test. The block definition diagram lends itself to express 



real world systems through the rich set of semantics. Looking at the BDD for the Cruise Control 

unit we see that we may express specialization, composition and associations in an easy to 

understand format.  

While useful in capturing high level detail, the system engineer may wish to provide details 

about the internal construction e.g. what items are placed on to what buses. The Internal Block 

Diagram (IBD) can address this issue. An example of this is given in Figure 4. The IBD helps the 

system engineer to model flow ports, standard ports, standard and required interfaces and the 

nature of the system interactions. Furthermore, as we add more details to the data model, e.g. in 

the software design, the bit positions, most significant bit (MSB), least significant bit (LSB), then 

it is possible to directly generate Interface Control or Interface Definition documents (ICD, IDD) 

information that can be used as a basis for tests between sub system to sub system or between 

systems and software. 

Figure 4. Internal Block Diagram 

Parametric Diagrams. We have so far shown how we can model the interaction of parts that 

constitute a system in terms of the relationships of physical and logical interfaces. However the 

parts may also have constraints attached to them. This notation is a specialized IBD and allows 

the systems engineer to develop rule based specifications in terms of mathematical equations that 

represent the system behavioral, performance or other constraints. An example is shown in 

Figure 5. The parametric diagram shows inputs and outputs in terms of value types and the 

associated mathematical equation. Given this proviso it is possible to then develop black box 

tests that exercise inputs, in terms of their conceptual representation, say range, domain and 

value, and outputs that will exercise the equation encapsulating the constraint.  

 



par [block] Vehicle [2]

Vehicle.AccEq : Acceleration
Equation

constraints
{F = m * a}

a
F

m

Vehicle.BrkFrcEq : Braking Force
Equation

constraints
{f = (tf * bf) * (1 - tl)}

bf

f

tf
tl

Vehicle.DistEq : Distance Equation

constraints
{v = dx / dt}

t

v

x

Vehicle.VelEq : Velocity Equation

constraints
{a = dv / dt}

a
t

v

Vehicle.ChasSys.-
RFTire.Frctn :

Friction

Vehicle.BrakeSys.Rtr.-
BrakingForce : Force

Vehicle.BrakeSys.ABS.-
Duty Cycle : Duty Cycle

Vehicle.Mass : kg

Vehicle.Posn :
Position

{F = m * a}

 
Figure 5. Parametric Block Diagram 

Allocation. While the BDD and IBD provide a visual representation of the system under 

construction they are also useful for understanding the allocation of parts within the system. 

Understanding allocation helps the tester identify the inter relationships between functionality, 

requirements and other blocks as different perspectives of the same system. An example is given 

in Figure 6. The SetSpeed block is allocated to the SetSpeed operation and SetSpeed part has 

been allocated from CruiseControlIO. 

 

Figure 6. Allocation of concerns. 



Summary. SysML introduces a number of new diagrams, constructs and semantics that help the 

system engineer in designing a testable system from the outset. When we design a system for test 

there are numerous factors that have to be taken into account, from clear dissemination of 

concerns, to specifying clear and well understood interfaces. Consequently ICD documentation 

can automatically generate a basis for system integration tests. If we choose from the outset to 

specify a system using SysML we can naturally then express software in the form of UML. From 

here test cases, code, and the accompanying documentation may be generated. Taking this 

approach reveals a flexible system which also reduces verification and validation costs. We have 

shown that in each stage of systems engineering we may use the SysML to design a more 

testable system and that at every stage from system conception to ironing out the detail at the low 

level interface SysML is the key element in the systems engineering toolkit. Examples of how 

this has been achieved in industry will now be highlighted.  

Case Studies 

Rail Signaling System Test. Within the European rail domain, software is developed according 

to EN 50126, Railway Applications: The Specification and Demonstration of Dependability - 

Reliability, Availability, Maintainability and Safety (RAMS). This is used in conjunction with 

EN 50129 Railway Applications: Safety related electronic systems for signaling, and EN 50128 

Railway Applications: Software for Railway Control and Protection Systems. These norms have 

been created by CENELEC (Comité Européen de Normalisation Électrotechnique), and therefore 

are often referred to as “CENELEC-norms” in the rail domain. In this example, we look at the 

deployment of a Radio Block Control (RBC) for the European Rail Traffic Management System 

(ERTMS) Malaga line. The RBC is responsible for continuous speed supervision and movement 

authority of the train. The train uses Eurobalises to determine the Train Location and sends it to 

the RBC. Eurobalises are track mounted devices that operate on transponder technology. The 

balise transmits information to the train, such as: location of the balise; the geometry of the line, 

such as curves, gradients and speed limits; and the position of any signals. Balises are typically 

deployed in pairs so that the train can determine its direction of travel A->B from direction B-

>A. The Interlock authorizes and gives proceed authorization to the RBC to allow train 

movement. The RBC is categorized as a SIL 4 product. This scenario is shown in Figure 7. One 

aspect of system validation requires the analysis of all possible execution sequences in order to 

gain full test coverage. 



 
Figure 7 RBC Validation Scenario 

Traditional approach to performing RBC Validation. In the approach illustrated in Figure 8, 

the System Requirements Specification (SRS) was modeled in a UML Use Case model within 

Artisan Studio. Design and analysis work continued within Studio and were expressed in terms 

of UML State and Sequence Diagrams. As Studio provides an OLE interface, an in-house tool 

was developed that allowed the construction of flow charts from the State and Sequence 

Diagrams that captured all possible execution paths. The information was then exported in the 

form of a spreadsheet. The validation team then generated test case SDs that exercise the system. 

The validation team identified which paths are valid and generated test cases for these, which 

paths are impossible to run, and which paths are incompatible. Only paths that are valid had test 

case SDs generated. With the test case SD constructed within Studio, it was possible to develop a 

custom code generator that interlinked into the Studio model. In this instance Python scripting 

language was chosen to exercise the system under test (SUT). The Python script exercised the 

system under test on both a simulated PC platform and/or on a physical test rig. Finally test 

report documentation was constructed and presented to the Railway Authority as certification 

evidence. While this overall approach was more efficient - all valid paths of the product are 

exercised, it did have the drawback of not being very flexible if the original UML test model 

elements such as state diagrams and sequence diagrams changed. 

There is a solution to this issue, namely Automated Validation. 

 

WRSL RBC VALIDATION 
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Figure 8 Traditional RBC Validation 

RBC Automated Validation. The automated validation approach is outlined within Figure 9. 
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Figure 9 Automated RBC Validation 



 

The main objectives of the automated validation process are:  

1) Eliminate the amount of manual work. 

The excel files are created automatically. This information was included as evidence. 

2) Reduce human factor influence (human errors) in validation.  

Originally these files were hand-coded. 

3) Decrease the number of files used in the validation process. 

4) Enforce design standards. 

The tool integration for this process is shown in Figure 10. The Visual BASIC DLL reader 

imports information from the Artisan Studio model via the OLE interface, namely SDs and State 

Diagrams. Information contained within SDs includes text, sequence order and links in steps. For 

State Diagrams, levels in diagrams, State Transitions, input /output functions and text are 

imported. The Visual .NET control application manages the imported information and creates 

flowcharts and state diagram representations. The control application tool analyzes this 

information to provide all possible execution paths, but also allows the user to modify the paths 

created by allowing the addition of steps, states, transactions etc. Incompatible paths can be 

detected as guided by the user. As the lifecycle of the project progresses, different versions of the 

diagrams can be compared for changes. Finally the application automatically produces validation 

documentation. Thus at this stage our workflow amounts to the validator analyzing execution 

paths in a graphical manner. This process produces a 'possible paths.xls' spreadsheet and 

documentation templates that include the steps executed in the test case. Finally the design 

standard for model construction is enforced as the control application tool compares the SD and 

State Diagram construction against the accepted quality standard, e.g. conditional expressions 

within the SD defined since UML 2.0 using fragments.  

Artisan UML to Flowchart Analysis and Management tool.
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Figure 10. RBC Tool Integration 



Most important of all, the adoption of this process has led to a decrease of about 75% in the cost 

of validation of this SIL 4 product. This demonstrates a significant return on investment (ROI) 

for this approach to model-based testing. 

Automotive Model Based System Test. Often within the automotive industry a standard 

application is deployed on a different number of target platforms. Traditional systems would 

require extensive testing for each of these platforms, often carried out by hand. This is time 

consuming and subject to significant delays and re-analysis should alterations be introduced 

when testing has commenced. There is a solution to this problem though: Model Driven 

Development with automatic test script production. So the same principles for model based 

software development are used for test script generation. An overview of the platform 

independent modeling system is shown in Figure 11.  
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Figure 11 Automotive Platform Independent System Test. 

The system produces, administers and executes the test scripts. The system as a whole exercises 

Hardware In the Loop (HIL) testing. Testing breaks down into 3 stages.  

1) Model the test case, i.e. create the test case, define the parameters for the test, and model the 

test sequence.  

a. Test Cases are derived from Use Cases (usually black box, but not always) 

b. White box Test Cases can be derived (deduced) from Activity Diagrams 

c. Test Scripts can be derived from both Activity and (more often) Sequence Diagrams 

2) Automatically generate the test case, through a code generator based on model content. 

3) Execute the test on the test rig, capture results and then automatically produce test results 

documentation.  



Figure 11 shows a high level view of the components. The test bench shown in Figure 12 

provides a configurable remote test model of the car. The interface to the RTOS and application 

under test is through predefined standard test interfaces.  
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Figure 12 Testbench Overview 

The test sequences are defined in UML Sequence Diagrams and are platform independent this is 

possible due to the fact that the test library contains the operations of the actual test equipments 

used and their abstracted functionality modeled as interfaces. These interfaces are used in the test 

sequences, thus allowing the mapping of the test to the equipment to be used separately. The test 

bench computer interacts with the test bench, as per Figure 13. The shown dependencies depict 

the fact that the mapping between variables used in the test descriptions and the parameters and 

signals of the simulation are pragmatically realized using name matching. The test function 

library holds drivers that communicate with the relevant platform.  
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Figure 13 Testbench Tool Interaction 



While we have highlighted the functional components, we need to understand how data flows 

through our system. This will also serve to highlight tool integration. This is highlighted in 

Figure 14. The central component within this test system is the Artisan Studio repository. Studio 

allows an XML export of the test case design. This has two purposes. Firstly, XML serves as an 

input to a code generator, python in this case. It also provides a base for the documentation of the 

test cases. Using a model driven approach simplifies the test case generation and allows the 

validator to concentrate on the goal of the test case as opposed to being caught up with the 

implementation details. As an alternative, the production of XML can be omitted, resulting in a 

better performance when generating the test scripts directly from the model. This was done in a 

second phase of the project 
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Figure 14. Automotive Tool Integration and Workflow 

As a summary, figure 15 shows how the test scripts formerly produced manually by the testers 

are abstracted in the model-based test design. The scripts contain all levels of information, from 

the test strategy to the very specific access to different elements of the test bench. In the models, 

there are explicit perspectives for these levels. Use Cases manage the test cases and allow the 

combination of test parameters and test sequences, both of which are modeled using UML 

interaction modeling. The test infrastructure is described using the UML class model, which 

contains the ability to abstract each equipment type to the relevant service it provides for a test. 

The automated test script generation compiles the tests from the use case, i.e. test management 

level, the interaction model, i.e. the test sequences and parameters and the description of the test 

infrastructure into many low level test scripts, which can be run in the test automation 

infrastructure automatically.  
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Figure 15. Description of Automotive Model-based Testing 

Overall using a model driven test approach decreases the amount of human interaction, and 

probability of human error, while still allowing the validator to focus on the task at hand. This 

leads to more efficient and flexible system that can be reused as new products and interfaces are 

introduced. 

Remark on standards for Model-based Testing  

Since 2005, there is a OMG standard profile available for modeling test, called the UML 2 

Testing Profile (U2TP). In general, both case studies used the same or a similar approach like the 

one supported by U2TP, but without explicitly using this profile. Since SysML and also the 

U2TP are based both on UML 2.0, systems modeling and test modeling using U2TP can be used 

combined in one model. The SyML stereotype «testCase» is compatibly defined to comply with 

the same concept in U2TP.  
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«metaclass»

Property
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TestComponent

zone : TestZone [0..1]

«stereotype»

TestContext
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scheduler : Scheduler

«stereotype»

SUT

«interface»

Arbiter

getVerdict () : Verdict

setVerdict (in v : Verdict)

«interface»

Scheduler

startTestCase ()

finishTestCase (in t : TestComponent)

CreateTestComponent (inout t : TestComponent)

Scheduler ()

meta class Test Architecture

 
Figure 16: U2TP Test Architecture 



A test starts with setting up a test context. This contains an arbiter and a scheduler, which can be 

derived from the library elements shown in figure 16. The test case itself is defined in the UML 

behavioral model, so it could be a behavior or an operation, like stated in figure 17, showing also 

the four different test results. A test can be passed, failed, there could be a test error or the result 

is unclear, so there might be an error in the test concept itself. 
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Figure 17: Test Case and Test Objective 

The test sequence itself is mainly using a sequence diagram, which in general has three areas: 

Test Setup, test run and gain test results. Since sequence diagrams can be structured now, there 

are all means available to model even very complicated tests, but leverage the complexity by e.g. 

referencing subsequences. 

The level of automating test runs is not covered by the U2TP, because it highly depends on the 

tool chain used. Examples for successful application of this model-based testing approach in real 

projects are shown in the above described case studies. However, it is always good to know that 

there is a theoretical basis available for the modeling ideas pragmatically used. 

Conclusion. Test „Plans‟ can and should be modeled. The test plans should define the nature and 

purpose of the test suite (a collection of test cases). For example Basis Path or Coverage Testing 

Plans (usually white box) should specify (or model) the arcs and nodes (paths and modules) 

traversed and exercised by the suite. Parametrics can also be specified (and modeled) in terms of 

input-parameter-to-output-results tuples and automatically verified within the model itself (or an 

external script). The logical progression of: 

Test Plan (and models) to, 

Test Suite(s) (and models) to, 

Test Case(s) (and models) to, 

Test Scripts (and models) is in and of itself a “successive refinement” and decomposition process 

that lends itself even more naturally to symbolic modeling than do the more typical analysis and 

design activities. That is to say it is in actuality easier & more natural to model and build test 

plans and suites symbolically than systems and software engineering analysis and design. It also 

results in demonstrable ROI. 

References 
Czarnecki, Eisenecker, Generative Programming: Methods, Tools and Applications, Published 

by Addison Wesley. 

Friedenthal, S., Moore, A., Steiner, R. Practical Guide to SysML: The Systems Modeling 

Language, Morgan Kaufman September 2008  



Hamil, Unit Test Frameworks, Published by O‟Reilly.  

Hause, M.C., 2006a, The Systems Modeling Language - SysML, Sept 2006, INCOSE EuSEC 

Symposium, Edinburgh, 2006 Proceedings. 

Hause, M. C., 2006b, Cross-Cutting Concerns and Ergonomic Profiling Using UML/SysML, 

INCOSE International Symposium Orlando, Florida, Proceedings. 

Holt, J., Simon Perry, S., SysML for Systems Engineering, IET Publications, 2008 

IEC, Functional safety and IEC 61508 A basic guide, November 2002, The International 

Electrotechnical Commission (IEC) available online from 

http://www.iee.org/oncomms/pn/functionalsafety/HLD.pdf  

Korff, A., Modellierung von eingebetteten Systemen mit UML und SysML, von Spektrum 

Akademischer Verlag Taschenbuch - 13. June 2008 

Object Management Group (OMG), 2005a, UML Testing Profile for UML 2.0, v1.0, formal/05-

07-07 (full specification)  

Object Management Group (OMG), 2005, Military Architecture Framework Request for 

Information, Available from www.omg.org. [Accessed April, 2005] 

Object Management Group (OMG), 2007a. Unified Modeling Language: Superstructure version 

2.1.1 with change bars ptc/2007-02-03. [online] Available from: http://www.omg.org 

[Accessed September 2007]. 

OMG Systems Modeling Language (OMG SysML™), V1.0, 2007b, OMG Document Number: 

formal/2007-09-01, URL: http://www.omg.org/spec/SysML/1.0/PDF, Accessed November, 

2007  

Steven, Jackson, Brook and Arnold, Systems Engineering: Coping with Complexity Published 

by Prentice Hall.  

Biography 
David Richards, Application Engineer –Artisan Software Tools 

David has worked in the Safety Critical domain for 15 years. Starting with financial systems, 

and moving to RTOS Operating System development, and successfully completed numerous 

consultancy projects in both civil and military aviation as well as rail signaling projects. His 

current role includes the specification of tool integration projects as well as sales presentations 

and training courses. 

Andrew Stuart, R&D Systems Engineer – Westinghouse Rail Systems Ltd 

Andrew Stuart has worked as a systems and software engineer on many different safety 

critical domain projects for most of his career including rail and avionics. 

Matthew Hause, Chief Consultant at Artisan Software Tools 

Matthew Hause is Artisan‟s Chief Consulting Engineer, is a member of the OMG SysML 

specification team, and the co-chair of the UPDM group. He has been developing real-time 

systems for over 30 years. He started out working in the Power Systems Industry, and has been 

involved in Process Control, Communications, SCADA, Distributed Control, military systems 

and many other areas of real-time systems. His roles have varied from project manager to 

developer. His role at Artisan includes mentoring, sales presentations, standards development 

and training courses. He has written a series of white papers on project management, Systems 

Engineering, architectural modeling and systems development with UML, SysML and 

Architectural Frameworks. He has been a regular presenter at INCOSE, the IEEE, BCS, the IET 

and other conferences. Matthew studied Electrical Engineering at the University of New Mexico 

and Computer Science at the University of Houston, Texas. 


