Modeling & Simulation of CubeSat Mission

Model-Based Systems Engineering (MBSE) Behavioral Modeling and Execution Integration of MagicDraw, Cameo Simulation Toolkit, STK, and Matlab using ModelCenter

Sara Spangelo¹

Hongman Kim²

Grant Soremekun³ Phoenix Integration, Inc.

May 29/30, 2013

Jet Propulsion Laboratory (JPL), California Institute of Technology

System Engineering Challenges

Conventional approaches:

- Focus on subset of subsystems
 - Over-simplified, low fidelity
 - Neglect subsystem interactions
- Requirements verification using average/best/worst-cases
 - Fail to capture realistic "dynamic" nature of missions
- Models and simulations are not integrated!
 - "Hacked" together for one-off cases
 - Not modular, extensible, reusable

System Engineering Challenges

Particularly an issue for CubeSats¹ because:

- Physical components physically integrated
- Extremely constrained:
 - Limited ability to collect and store energy (e.g. batteries)
- Operational constraints/ decisions coupled
 - When to collect data versus download data?
- Obits are unknown/ dynamic
 - Little/ no control over launch orbit
 - Experience variation in eclipse duration, may de-orbit
- Operate in inefficient/ stochastic environments

Integrated models and tools are critical to design and plan for these missions!

¹Type of miniature spacecraft (1U = 10cm³, <1 kg)

Image Credit: www.cubesatkit.com

Model-Based Systems Engineering (MBSE¹)

Why MBSE?

- 1) Enables system-level model capture
 - Formal, accurate, authoritative single source
 - Contains elements, relationships, interactions
 - Multiple compatible views, e.g. physical/ functional
 - Requirements verification and traceability

¹ "Formal" model to support requirements, design, analysis, verification

Model-Based Systems Engineering (MBSE)

Why MBSE?

2) Enables integration of models and simulations

- Connect system-level model to analytical tools (STK, Matlab)
- Execute dynamic simulation of end-to-end mission •
- Identify failure to satisfy requirements, sub-optimal designs •
- Accommodates re-evaluation when design changes occur
- Enables co-simulation: simultaneous vehicle/ mission design •

Motivation Overview Modeling Simulating Design Trades Reflections Future Work

Motivating Mission Example

- Radio Aurora Explorer (RAX) CubeSat mission
- Science target: plasma irregularities in ionosphere
- Experimental zone in Poker Flat, Alaska
- Global ground station network
- Vehicle constraints: solar panels, battery, data buffer

RAX Ground Network footprints

Motivating Mission Example

Systems engineering questions:

- How do satellite states evolve throughout mission?
- Does the vehicle design/operations meet all mission requirements?
- How do changes in spacecraft mission parameters impact performance and requirements satisfaction?

Motivation

Overview

Modeling

Simulating

Reflections

Future Work

Design Trades

Project: "Model" Operational CubeSat Mission goals....

Goal #1: Develop fundamental systems model of CubeSat mission

Capture structure, function, relationships, requirements, traceability. *Pretty clear-cut if you know what you're modeling. Accomplished by SSWG*^{1,2}.

Goal #2: Execute realistic behavioral CubeSat scenarios

Capture operational opportunities, state evolution, mission performance. *No clear way to do this in March 2013.*

Potential tools: MagicDraw? Simulation Tool Kit (STK)? Matlab? Phoenix ModelCenter? Cameo Simulation Toolkit?

[1] S. Spangelo, D. Kaslow, C. Delp, L. Anderson, B. Cole, E. Foyse, L. Cheng, R. Yntema, M. Bajaj, G. Soremekum, and J. Cutler, "<u>Model Based Systems Engineering (MBSE) Applied to Radio Aurora Explorer (RAX) CubeSat Mission Operational</u> <u>Scenarios</u>", Accepted for IEEE Aerospace Conference, 2013, Big Sky, MT, March 2013.

[1] S. Spangelo, D. Kaslow, C. Delp, B. Cole, L. Anderson, E. Fosse, L. Hartman, B. Gilbert, and J. Cutler, "<u>Applying Model Based</u> <u>Systems Engineering (MBSE) to a Standard CubeSat</u>", IEEE Aerospace Conference, 2012, Big Sky, MT, March 2012.

Project: "Model" Operational CubeSat Mission accomplished...

Project Deliverables:

- Systems-level SysML model (in MagicDraw)
 - Structure of mission architecture and vehicle
 - Requirements definition and traceability
 - Parametric diagrams to capture analytical relationships
 - Evaluated using MBSE Analyzer
 - Behavioral diagrams to capture dynamic operations
 - Executed using Cameo Simulation Toolkit and MBSE Analyzer¹
 - Analytical models for describing behavior
 - STK, Matlab, Java
 - ModelCenter enabled integration with SysML and automated execution of dynamic scenarios

Image Generated with STK

Motivation

Overview

Modeling

Simulating

Reflections

Future Work

Design Trades

Modeling Philosophies

For usability/ extensibility:

- *Patterning*: re-use of modeling patterns *e.g. common pattern in Power and Data Management subsystems*
- *Nomenclature*: simple and sufficiently descriptive *e.g. subsystem naming codes used for data rate and power values*

CubeSat System Model Architecture

PHOENIX

The system model captures requirements, structure, behavior, and parametrics.

11

Structural Diagrams

Motivation Overview Modeling Simulating Design Trades Reflections Future Work

Mission Level

Vehicle Level

Defines constraint on lowest battery level throughout mission

Mission Requirements Drive systems design

Defines constraint on minimum download

Motivation Overview Modeling Simulating Design Trades Reflections Future Work

Defines constraint on lowest data storage level throughout mission

Parametric Diagram

Constraint blocks defines opportunities

Motivation Overview Modeling Simulating Design Trades Reflections Future Work

par [Block] CubeSatMission	n [🔛 GetSta	ates]					
		spacecra	ft : Spacecraft			«MC_Component» getStates : GetStates	
		orbit : C	Drbit		ApogeeÅltitude : km		· : · · · · : · · · : · · · ·
	apogee	e_altitude : km			ArgOfPerigee Real		
			arg_pengee : degree		Inclination : Real		
	inclinat	tion : degree	orbit epoch : sec		OrbitEpoch : Real		· : · · · · . : · · · · : · · · ·
	perige	e_altitude : km			: PerigeeAltitude : km		
			raan : degree		RAAN Real		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	true_ar	nomaly : degree			TrueAntomaly : Real		
	attitudeSo	cheme : AttitudeSc	heme		Spirr Rate : Real –	agi	
	spin_	rate : Real					
		vehicle	: Vehicle	_	time epoch Real		
	sTim	ne : sec	ime sten : sec		StepSize : sec		
	total_m	nass:kg					
sun state (1:	sun_st	tate : Real					_sun_state : Real
eclipse)	-		1				sa1.:Real
	xp_son	ar_angle : degree	vm solar angle : degre				sa2 : Real
Download state if no communication	yp_sola	ar_angle : degree	angle i degre				sa3 : Real
(dld_state=0), else if communication			ym_solar_angle : degre	e			sa4 : Real

Pointing to a ModelCenter model with STK and Matlab

ModelCenter Model STK and Matlab Plug-Ins

F	apacecraft : Spacecraft		ullC_Cerrponents getStates : GetStates	. internet
	orbit : Orbit	ApogeeAithude : km		
	apogre_atitude : km arg_perigee : degree	ArgOPerigee Real		
	initination degree orbit_epoch sec	OrtekEpech Real		
	perigee_altitude : km	RAAN Real		
and the second	true_anomaly : degree	TrueAspraly Real		Sandan S.
	attitude Scheme Attitude Scheme	Spin_Rate : Real	agi	
	vehicle : Vehicle	time_epoch : Real		
	sTime sec	StepSize sec	*	
	fotal,mass 1 kg	mass : Real		
nun state (1)	- sun state Real			
ecipse)	xo solar angle : degree			sa1 : Real
Cownlead state if no	yp_solar_angle : degree			sa2 : Real
(did_state=0), also if communication	ym_solar_angle : degree	in the second		aa4 Real

- Analysis models (STK, Matlab) wrapped and integrated with ModelCenter •
- ModelCenter models imported into SysML model constraint blocks with **MBSE** Analyzer

Systems Tool Kit (STK)

	special (percent)		gettiners - Gettiners	
	MM (MH)	Appartment of the		
	ander tegran part	ing/Hargan And Articular And		
	anges stick on	Indian Ind Arguetikas in 1		
	(and i degree)	Bank Report		
	and being a second second	Townstreet, And 11		
	ethaltichen attaltichen	10,500 Mar.	Aagi	
	anne vece			
	(the pipe on)	Dealer and		
	tota, reaso ing	144 Bal-		
ac est.	where some data			
in such as a	and the second se			the ne
	and and there are agen		/	22
R. 889-11 Mar 7	In the sale days		/	-

Analytic simulation tool used to propagate obit & compute:

- Solar state: sun/eclipse, solar panel angles
- Access to experimental zone
- Access to ground stations

Parametric Diagrams Constraint blocks computes total power

Parametric Diagrams

Constraint blocks update satellite states

- Compute energy level at the next time step
- Similar parametric diagrams for experiment data and data download

MBSE Analyzer: Parametric Diagram Solver

🦞 Phoenix Integration MBSE Analyze	r					×
Analyzer Edit View Tools Help						
Welcome Review Requirements Manage	Constraint Blocks Manage Parametric Dia	ograms Ev	aluate Designs			
receive requiremente manage						
Design Exploration	Analysis Case	<none></none>			▼ +	
	Trade Study	<none></none>		,	- + = 😿	
Select a Subject to Analyze	Property	Unit	Original	New	Margin	
 ▲ Data ⊕ ⊕ Analysis ⊕ ⊕ Designs ⊕ ⊕ OpaqueBehaviors 	buffer □ += maxDataCapacity □ += maxDataCapacity	MBytes	100.0	100.0	1,500.0 MByte	s
	🖻 💷 battery					
tering Signals tering Signals tering Structure tering Atmosphere		ij Ij	92000.0 115000.0	92000.0 115000.0	🖋 5,000.0 j	
CubeSatMission	ter ter sonarray	hits	1000000 0	1000000.0		
External System	→= downdata level start	bits	0.0	0.0		
Plasma	→= drate_bus	bits/sec	200.0	200.0		
RadarStation		bits/sec	9600.0	9600.0		
🗄 🛅 Spacecraft System	+= drate_dm	bits/sec	0.0	0.0		
⊞- <u>—</u> Types		bits/sec	0.0	0.0		
		bits/sec	4000.0	4000.0		
Parametric Diagrams Selection Filter		bits/sec	0.0	0.0		
CubeSatMission		j	96000.0	96000.0		
		j	120000.0	120000.0		
	power_bus	w	1.0	1.0		
E- ♥ ■ spacecraft.vehicle	→■ power_com	w	3.0	3.0		
📝 🚟 PowerCollection		w	0.3	0.3		-
	→= power_pld	w	3.6	3.6		-
	→■ power_pm	w	0.4	0.4		_
	solIntensity	W/m2	1361.0	1361.0		
🔤 😿 UpdateEnergy	→■ sTime	S	0.0	0.0		_
	+= time_step	S	60.0	60.0	A	
	→■ total_mass	кд	3.0	3.0	✓ 0.0000 kg	
	data_level	DITS	1012000.0	1012000.0		
		MBytes	0.1206398010253	0.1206398010253		
	add off	Dits	0.0	0.0		
		Real	0.0	0.0		
	downdata lovel	hite	0.0	0.0		
	downloadDatzMP	MPutor	0.0	0.0		
		hite/sec	200.0	200.0	 0.070000 MBy. 	
		hits/sec	0.0	0.0		
		i i	06382 4803821905	4 96304 698527		
	energy owerMargin	j	0.0	4304 6085270	4 304 7 i	
	== energyEowermargin	i	0.0	0.0	- 1,501.7 j	Ŧ
Refresh Restore Defaults		i	Design: Save	Save As Analysi	s: Run Exp	oort

- Solves linked parametric diagrams (all 3) simultaneously
- Automated requirements verification (green: pass, red: fail)

Bringing the Model to Life Main State Machine Diagram

- Entry point of Cameo Simulation Toolkit (CST) behavioral simulation
- Starts "RunOperation" activity diagram that steps through mission simulation
 - Updates solar, experiment, and download states according to signals

Main Simulation Loop

How are Mission Simulations Performed?

Mission Simulation Results

Motivation Overview Modeling Simulating Design Trades Reflections Future Work 2

						Еа	ch coi	umn c	ontaii	ns			
						/ up	dated	state	at tim	e step)		
tNominal.pxt]: 5/	24/2013, 15:49:22					· ·							
tions Help													
🔘 🖲 Standa	rd Plots 🕶 🏙 Data Visualizer 🕶 🛛	🥑 Plug-Ins 📓 🎘 Templates		-	÷ /								
	Legend:	input			valiu output			invalid	l output			modified v	alue
1													
		-		2 🗖	3	4	5	6	7	8	9	10	1
LubeSatMiss	ion.spacecraft.attitudeScheme.	.spin_rate	10	10	10	10	10	10	10	10	10	10	10
CubeSatMiss	ion.spacecrart.externalEnvironi	ment.experimentalEnvironment.Altitude	1	1	0	0	1	0	1	0	0	1	1
CubeSatMiss	ion epacecialt.externalEnviron	ment.experimentalEnvironment.Avail	65 1107	65 1107	65 1107	CE 1107	65 1167	65 1167	65 1167	CE 1107	CE 1107	CE 1107	CE 110
CubeSatMis	ion spacecraft external nyiron	ment experimentalEnvironment ongitude	147.461	147.461	147.461	-147.461	147.461	-147.461	-147.461	-147.461	-147.461	-147.461	-147.40
CubeSatMiss	ion spacecraft external nviron	ment experimentalEnvironment MayBange	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300
CubeSatMis:	ion spacecraft external nviron	ment experimentalEnvironment MinElev	1000	0	0	0	0	1300	0	0	0	0	0
CubeSatMis	ion.spacecraft.groundNetwork.	stationNetwork AnnArbor Altitude	0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.256
CubeSatMis:	ion, spacecraft, groundNetwork	stationNetwork.AnnArbor.Eff	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
CubeSatMis:	ion, spacecraft, groundNetwork	stationNetwork.AnnArbor.Latitude	42.271	42.271	42.271	42.271	42.271	42.271	42.271	42.271	42.271	42.271	42.271
CubeSatMis:	ion.spacecraft.groundNetwork.	stationNetwork.AnnArbor.Longitude	-83.726	-83.726	-83.726	-83.726	-83.726	-83.726	-83.726	-83.726	-83.726	-83.726	-83.72
CubeSatMis:	ion.spacecraft.groundNetwork.	stationNetwork.AnnArbor.MinElev	10	10	10	10	10	10	10	10	10	10	10
CubeSatMis:	ion.spacecraft.groundNetwork.	stationNetwork.MenIoPark.Altitude	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022
CubeSatMis:	ion.spacecraft.groundNetwork.	stationNetwork.MenloPark.Eff	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
CubeSatMis:	ion.spacecraft.groundNetwork.	stationNetwork.MenIoPark.Latitude	37.457	37.457	37.457	37.457	37.457	37.457	37.457	37.457	37.457	37.457	37.457
CubeSatMis:	ion.spacecraft.groundNetwork.	stationNetwork.MenloPark.Longitude	-122.175	-122.175	-122.175	-122.175	122.175	122.175	-122.175	-122.175	-122.175	122.175	-122.1
CubeSatMis:	ion.spacecraft.groundNetwork.	stationNetwork.MenloPark.MinElev	5	5	5	5	5	5	5	5	5	5	5
CubeSatMis:	ion.spacecraft.orbit.apogee all	titude	811.68860	811.68860	811.68860	811.68860	811.68860	811.68860	811.68860	811.68860	811.68860	811.68860	811.6
CubeSatMis:	ion.spacecraft.orbit.arg perige	e	109.73300	109.73300	109.73300	109.73300	109.73300	109.73300	109.73300	109.73300	109.73300	109.73300	109.7
CubeSatMis:	ion.spacecraft.orbit.inclination		101.707	101.707	101.707	101.707	101.707	101.707	101.707	101.707	101.707	101.707	101.7
CubeSatMis:	ion.spacecraft.orbit.orbit epoc	h	-334479.695	-334479.695	-334479.695	-334479.695	-334479.695	-334479.695	-334479.695	-334479.695	-334479.695	-334479.695	-3344
CubeSatMis:	ion spacecraft orbit perigee all	titude	457 57053	457 57053	457 57053	457 57053	457 57053	457 57053	457 57053	457 57053	457 57053	457 57053	457.5
CubeSatMis:	ion.spacecraft.orbit.raan		324,938	324,938	324,938	324,938	324,938	324,938	324,938	324,938	324,938	324,938	324.9
CubeSatMis:	ion.spacecraft.orbit.true anom	alv	253.12799	253.12799	253.12799	253.12799	253.12799	253.12799	253.12799	253.12799	253.12799	253.12799	253.13
CubeSatMis:	ion.spacecraft.vehicle.data lev	vel start	1000000	1012000	1264000	1516000	1768000	2020000	2032000	2044000	2056000	2068000	20800
CubeSatMis:	ion.spacecraft.vehicle.downda	ta level start	0	0	0	0	0	0	0	0	0	0	0
CubeSatMis:	ion.spacecraft.vehicle.drate b	us	200	200	200	200	200	200	200	200	200	200	200
CubeSatMis:	ion.spacecraft.vehicle.drate_c	om	9600	9600	9600	9600	9600	9600	9600	9600	9600	9600	9600
CubeSatMis:	ion.spacecraft.vehicle.drate_dr	m	0	0	0	0	0	0	0	0	0	0	0
CubeSatMis:	ion.spacecraft.vehicle.drate_p	c	0	0	0	0	0	0	0	0	0	0	0
CubeSatMis:	ion.spacecraft.vehicle.drate_pl	ld	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
CubeSatMis:	ion.spacecraft.vehicle.drate_p	m	0	0	0	0	0	0	0	0	0	0	0
CubeSatMiss	ion.spacecraft.vehicle.energy_	level_start	96000	96304.698	96440.418	96511.007	96598.750	96743.013	97035.065	97336.973	97688.591	97958.561	98258
CubeSatMiss	ion.spacecraft.vehicle.energyL	.owerMarginOld	120000	73304.698	73304.698	73304.698	73304.698	73304.698	73304.698	73304.698	73304.698	73304.698	73304
CubeSatMis:	ion.spacecraft.vehicle.power_t	ous	1	1	1	1	1	1	1	1	1	1	1
CubeSatMis:	ion.spacecraft.vehicle.power_c	com	3	3	3	3	3	3	3	3	3	3	3
CubeSatMis:	ion.spacecraft.vehicle.power_c	<u>4m</u>	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
CubeSatMis:	ion.spacecraft.vehicle.power_p	bld	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6
CubeSatMiss	ion.spacecraft.vehicle.power_p	om	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
CubeSatMiss	ion.spacecraft.vehicle.solInten	sity	1361	1361	1361	1361	1361	1361	1361	1361	1361	1361	1361
LubeSatMiss	ion.spacecrart.vehicle.sTime		0	60	120	180	240	300	360	420	480	540	600
LubeSatMiss	ion.spacecrart.vehicle.time_ste	p	160	160	160	60	ь	ы	60	60	60	160	60
LubeSatMiss	ion.spacecraft.vehicle.total_ma	355	3	3	3	3	3	3	3	3	3	3	3
LubeSatMiss	ion.spacecraft.vehicle.dMgmt.b	outter.maxDataCapacity	100	100	100	100	100	100	100	100	100	100	100
LubeSatMiss	ion.spacecraft.vehicle.pMgmt.b	attery.energyLowerLimit	23000	23000	23000	23000	23000	23000	23000	23000	23000	23000	23000
LubeSatMiss	ion.spacecraft.vehicle.pMgmt.b	sattery.maxEnergyCapacity	115000	1115000	115000	115000	115000	115000	115000	115000	115000	115000	11500
	ion spacecraft vehicle nowfol	solArray solar efficiency	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
CubeSatMiss	ion. opaccorart. Fellicie. poweoi.		0.0100	0.0100	0.0100	10.0100	0.0100	0.0100	0.0100	1.0.0100	1.0.0100	0.0100	

- During CST simulation, MBSE Analyzer is called at each time step
- Data Explorer automatically stores time history of the simulation data

Mission Simulation Results

Motivation Overview Modeling Simulating Design Trades Reflections Future Work

energy_level (J)

- Combined simulation SysML behavioral diagrams to STK, Matlab using MBSE Analyzer
- MBSE Analyzer is called at each time step during CST simulation
- Time history of energy level, experiments, and data download is stored

Final Step: Requirements Verification Full end-to-end (dynamic) scenario

	锌 Phoenix Integration MBSE Analyzer					
	Analyzer Edit View Tools Help					
Motivation	Welcome Review Requirements Manage Constra	int Blocks Manage Parametric Dia	grams Evaluate Designs			
Overview	Select a Subject to Review	Name	Property	Bounds	Actual	Specification
Modeling	Data Analysis Designs Designs Design Design	Analysis Subject Requirements BatteryCapacity BatteryLevelMargin DataBufferCapacity	spacecraft.vehicle.pMgmt.battery spacecraft.vehicle.energyLowerMa spacecraft.vehicle.dMgmt.buffer	< 1.2000e+05 j > 0.0000 j < 1,600.0 MBytes	 ✓ 1.1500e+05 j ✓ 72,301 j ✓ 100.00 MBytes 	The battery capacity shall no The battery level margin shal The data buffer level shall no
Simulating	Initial Initial Initial Initial Initial Initial Initial	DownloadRequirement VehicleWeight	spacecraft.vehicle.downloadDataMB spacecraft.vehicle.total_mass	> 0.070000 MBytes < 3.0000 kg	 0.71754 MBytes 3.0000 kg 	The system shall download a The vehicle system shall wei
Design Trades	NominalFinal NominalFinal Prover_0.258atteryCapacity	Other Requirements Other Requirement	(not specified) (not specified)	none < 0.0030000		The system shall perform on The vehicle system shall fit
Reflections	Power_0.25SolarPanelArea					
Future Work						
NASA	Refresh	I				

- Post-CST simulation: final state stored in an instance specification
- Use MBSE Analyzer to verify requirements with visual tool!

Mission and Design Trade-Offs Battery Capacity

Mission and Design Trade-Offs Orbit Altitudes

Nominal: semi-major axis = 7012km, apogee altitude = 811.69 km, perigee altitude=457.57 km High: semi-major axis = 7500 km, apogee altitude = 1311.22 km, perigee altitude = 932.50 km Low: semi-major axis = 6800 km, apogee altitude =593.55 km, perigee altitude=250.18 km

Motivation Overview Modeling Simulating Design Trades Reflections Future Work

28

Mission and Design Trade-Offs Ground Station Locations

Location And Description Of Ground Stations In Network

Name	State	Latitude (degrees)	Longitude (degrees)	Altitude (km)	Minimum Elevation (degrees)	Efficiency
AnnArbor	MI	42.271	-83.73	0.256	5	0.8
Fairbanks	AK	64.88	-147.5	0	0	1
MenloPark	CA	37.457	-122.2	0.022	0	0.95

Reflecting on Project Experience

How did MBSE enable us to overcome challenges?

- Coupled analytic models with simulation capabilities
- Demonstrated dynamic behavioral modeling
- Achieved requirements verification for full end-to-end missions
- Extensible by use of standards, libraries, patterns, etc.

Lessons Learned

- Working with many tools is challenging (license, versions, etc.)
- STK has a lot of flexibility: exploit use vectors/ angles
- Best to automate repeated tasks
- Working with vendors is necessary/advantageous
- Always ask: "Am I using the right modeling/simulation tool?"

Motivation

Overview

Modeling

Simulating

Reflections

Future Work

Design Trades

30

Future Work

- Extend the system-level model
 - Higher fidelity models of the spacecraft subsystems
 - Include communication and experimental link budgets
- Extend and refine the behavioral and analysis models
 - Add spacecraft scheduling for optimal use of resources
 - Improve approach for data extraction at specific time (e.g. from STK)
- Automate system and mission parameters trade-offs
 - Extend MBSE Analyzer to drive simulations by CST
 - Enable sensitivity analysis and design optimization
- Generalize the model for applicability to a variety of mission concepts

Acknowledgements

- Mike Bruchanski, Greg Haun, Dave Kaslow from Analytical Graphics, Inc. (AGI)
- Chris Delp, Louise Anderson, Bjorn Cole, James Smith from JPL
- Radio Aurora eXplorer (RAX) Team, Prof. James Cutler
- CubeSat and Amateur Radio Communities
- Dr. Derek Dalle (graphics)

