Early Analysis of Ambient Systems
SysML Properties using OMEGA2-1Fx

Manzoor Ahmad!, Tulia Dragomir!, Jean-Michel Bruel', Iulian Ober! and Nicolas Belloir?
YIRIT, Université de Toulouse, France

2LIUPPA, Université de Pau et des Pays de I’Adour, France
{ahmad, dragomir,bruel,iulian.ober} @irit.fr, belloirQuniv-pau.fr

Keywords:
Requirements, Formal Verification, Observers, RELAX, Simulation

Abstract:
Formal methods provide tools to verify the consistency and correctness of a specification with
respect to the desired properties of the system. This verification is important as the development
of an AAL (Ambient Assisted Living) system involves different technologies (medical services,
surveillance cameras, intelligent devices, etc.) requiring a strong consistency checking between
models. We illustrate in this paper how we prove some of the properties of the system before the
development even starts. To model the AAL system, we use the SYsML language. In terms of
tools, we used Rational Rhapsody in combination with the OMEGA2 profile which is an executable
UML/SYSML profile used for the formal specification and validation of critical real-time systems.
This profile is supported by the IFx toolset which provides mechanisms for the model simulation

and properties verification of the AAL system.

1 INTRODUCTION

Ambient Assisted Living (AAL) systems are ded-
icated to help people with limited capabilities in
their life. This kind of systems, and more specialy
all Ambient Systems are highly adaptive. They
modify their behavior at run-time in response
to changing environmental conditions. For these
systems, Non Functional Requirements (NFRs)
play an important role, and one has to identify as
early as possible the requirements that are adapt-
able. The distributed nature of these systems and
changing environmental factors makes it difficult
to anticipate all the explicit states in which the
system will be during its lifetime. As such, they
needs to be able to tolerate a range of environ-
mental conditions and contexts, but the exact na-
ture of these contexts remains imperfectly under-
stood.

In this context, we focus on two types of sys-
tem properties for our AAL case study: RELAX-
ed and Invariant. These requirements are ob-
tained by applying a process called RELAX [6]
on traditional requirements. RELAX is a require-
ment engineering language for self-adaptive sys-

tems that incorporates uncertainty into the spec-
ification of these systems. Our objective is to
prove these properties earlier as possible in the
specification cycle.

By other hand, formal methods are intended
to systemize and introduce rigor into all the
phases of software development. This helps us to
avoid overlooking critical issues, provides a stan-
dard means to record various assumptions and de-
cisions, and forms a basis for consistency among
related activities. By providing precise and un-
ambiguous description mechanisms, formal meth-
ods facilitate the understanding required to coa-
lesce the various phases of software development
into a successful endeavor [1].

In this paper we asses the use of formal meth-
ods for the modeling and verification of Ambi-
ent Assisted Living (AAL) systems. We use the
OMEGAZ2-TFx approach which has been applied
for the verification and validation of industry-
grade models [2] providing interesting results.
The OMEGA2 UML/SYsML Profile [3] defines
the semantics of UML/SYSML elements provid-
ing the means to model coherent and unambigu-
ous system models. In order to make the mod-

els verifiable, it presents as extension the ob-
server mechanism for specifying dynamic proper-
ties of models. The OMEGA2 UML/SysML Pro-
file is implemented by the IFx Toolbox [4] which
provides static analysis, simulation and timed-
automata based model checking [5] techniques for
validation.

This paper takes the reader a step forward and
enriches our existing work by integrating formal
methods for the verification of NFRs and spe-
cially RELAX-ed requirements.

Paper structure. This paper is organized as
follows: Section 2 presents other approaches de-
fined for the verification of AAL models, Sec-
tion 3 introduces the OMEGA2 UML/SysML
Profile and the IFx Toolbox that are used for
modeling and properties verification, Section 4
describes the case study: its specification, system
architecture and behavior, Section 5 presents the
properties, the AAL system has to satisfy, while
Section 6 contains the verification and simulation
results, Section 7 concludes the paper and high-
lights the future work.

2 Related work

The specification and verification of NFRs in the
early stages of the AAL development cycle is a
crucial issue [9]. These systems require clear and
precise specifications in order to describe the sys-
tem behavior and its environment. The formal
specification of the system behavior supported by
mathematical analysis and reasoning techniques
improve their development process and enable the
verification of these systems.

In [10], the authors present a verification ap-
proach based on MEDISTAM-RT which is a
methodological framework for the design and
analysis of real-time systems and timed traces
to check the fulfillment of non-functional require-
ments. They focus on safety and timeliness prop-
erties, to assure the correct functioning of AAL
systems and to show the applicability of this
methodology in the context of this kind of sys-
tems.

In [11], the authors introduce a profile named
TURTLE (Timed UML and RT-LOTOS Environ-
ment). With its formal semantics given in RT-
LOTOS and its toolkit, TURTLE enables a pri-
ori detection of design errors through a combi-
nation of simulation and verification/validation
techniques. By simulation the authors mean a

partial exploration of the system state space. It is
often used for debugging purposes and to quickly
increase confidence in a design. For finite state
space systems, exhaustive analysis is also possi-
ble. Verification relies on the exploration of the
whole system state space in order to prove ab-
sence of deadlocks for instance and other general
properties that should be satisfied by any system.

In [12], the authors introduce UPPAAL which
is a tool box for validation (via graphical sim-
ulation) and verification (via automatic model-
checking) of real-time systems. It consists of
two main parts: a graphical user interface and a
model-checker engine. The idea is to model a sys-
tem using timed automata, simulate it and then
verify properties on it. Timed automata are finite
state machines with time (clocks). A system con-
sists of a network of processes that are composed
of locations. Transitions between these locations
define how the system behaves. The simulation
step consists of running the system interactively
to check that it works as intended. Then the ver-
ifier check the reachability properties, i.e., if a
certain state is reachable or not.

3 THE VERIFICATION TOOLS

In this section, we introduce the OMEGAZ2 Profile
which we used for modeling the AAL system and
its properties and the IFx toolset used for the
verification and simulation of these properties.

3.1 The OMEGA2 UML/SysML
Profile

OMEGA2 is an executable UML/SYSML profile
dedicated to the formal specification and valida-
tion of critical real-time systems. It is based on
a subset of UML 2.2/SysML 1.1 containing the
main constructs for modeling system structure
and class/block behavior and which provides a
clear and coherent operational and timed seman-
tics.

The architecture of an OMEGA2 model is
described in Class/Block Definition Diagrams
by classes/blocks with their relationships (as-
sociation, generalization and composition) and
their interfaces. Each class/block defines prop-
erties and operations, as well as a state ma-
chine. The hierarchical structure of a model is de-
fined in composite structures/Internal Block Di-
agrams: parts that communicate through ports
and connectors. The UML/SYSML Profile leaves

open several semantic variation points for which
OMEGA2 defines a set of well-formedness rules
that result in a strong typing language. For fur-
ther details on the rules, their rationale and for-
malization, the reader is referred to [13].

The behavior of a system is given by the mod-
eled state machines that use asynchronous op-
eration calls and signal outputs for communica-
tion. The profile owns a textual action language
compatible with UML 2.2 action metamodel from
which implements the main constructs: object
creation/destruction, expression evaluation, vari-
able assignment, signal output and control flow
structuring statements.

The operational semantics of OMEGA2 re-
lies on an asynchronous timed execution model.
Each class/block is represented by a timed in-
put/output automata, potentially executing in
parallel with other blocks and communicating via
asynchronous operation calls and signals.

The OMEGA2 Profile can model timed be-
havior, where the model time base can either be
discrete or continuous and it is specified by the
user at verification. The time model is controlled
by primitives from automata with urgency [14]:
clocks, time guards and transition urgency an-
notations. The clock is represented by a Timer
block on which we can perform actions as: set
for setting the clock a delay and reset to restore
the clock to 0. Time guards are either described
as inequalities or specified via the timeout opera-
tion that verifies that a certain delay has elapsed.
With respect to time progress, transitions can
also define a particular semantics based on their
stereotype: eager defines that time progress is
disabled in a state (i.e., the actions on a transition
are executed as soon as possible), delayable means
that the time progress is enabled but it is bounded
by a limit and lazy specifies that time progress is
enabled and unbounded (i.e. time can progress
to infinity). Based on these notions, one can also
model synchronous communication in OMEGA?2
model.

For specifying and verifying dynamic prop-
erties of models, OMEGA2 uses the notion of
observers. Observers are special classes/blocks
monitoring run-time state and events. They
are defined by classes/blocks stereotyped with
<<observer>>. They may have local memory (at-
tributes) and a state machine describes their be-
havior. States are classified as <<success>> and
<<error>> states to express the (non)satisfaction
of safety properties. The main issue in model-
ing observers is the choice of events which trigger

their transitions, and which must include specific
UML/SYSML event types. One can observe:

e Events related to signal exchange: send,
receivesignal, acceptsignal.
e Events related to operation calls: invoke,

receive (reception of call), accept (start of
actual processing of call — may be different
from receive), invokereturn (sending of a
return value), receivereturn (reception of
the return value), acceptreturn (actual con-
sumption of the return value).

e Informal events explicitly specified by the
modeller using the informal action.

The trigger of an observer transition is a
match clause specifying the type of event (e.g.,
receive), some related information (e.g., the op-
eration name) and observer variables that may re-
ceive related information (e.g., variables receiving
the values of operation call parameters). Besides
events, an observer may access any part of the
state of the UML model: object attributes and
state, signal queues.

3.2 IFx Toolset

OMEGA2 models can be simulated and proper-
ties can be verified using the IFx toolset [15]. The
following terminology is used:

Verification: It designates the automatic pro-
cess of verifying whether an OMEGA2
UML/SYSML model satisfies (some of) the
properties (i.e. observers) defined on it. The
verification method employed in IFx is based
on systematic exploration of the system state
space (i.e., enumerative model checking).

Simulation: It designates the interactive exe-
cution of an OMEGA2 UML/SYsSML model.
The execution can be performed step-by-step,
random, or guided by a simulation scenario
(for example an error scenario generated dur-
ing a verification activity).

The IFx toolset relies on a translation of
UML/SYSML models towards a simple specifica-
tion language based on an asynchronous compo-
sition of extended timed automata, the IF lan-
guage!. The translation takes an input model in
XMI 2.0 format. The compiler verifies the set of
well-formedness rules imposed by the profile and
generates an [F model that can be further reduced
by static analysis techniques. This model is sub-
ject to verification that either validates the model

http://www-if . imag.fr/

with respect to its properties or produces a list of
error scenarios that can be further debugged us-
ing the simulator. The overall workflow of IFx
Toolset is shown in Fig. 1 [16].

Figure 1: IFx Workflow

4 MODELING THE AAL
SYSTEM WITH OMEGA2
PROFILE

In this section, we explore the AAL system
specification, the system architecture showing its
structural and behavioral diagrams i.e. its block
definition diagram, internal block diagrams and
state machine diagrams.

4.1 System Specification

Here is an excerpt of the AAL case study [6]:
Mary is a widow. She is 65 years old, overweight
and has high blood pressure and cholesterol levels.
Following her doctors instructions, she is con-
stdering to loose weight. The doctor has recom-
mended a hypo caloric diet with low levels of salt.
She lives by herself in an AAL house. First, we
start by taking into account the structural part
of the AAL system. We consider those parts that

are concerned with the daily calories intake of the
Patient in the AAL house. The AAL system
is composed of Fridge and Patient. We would
like to model these parts and the interaction that
takes place between them. The Fridge partially
contributes to the minimum liquid intake of the
Patient; it also looks at the calories consumption
of the Patient as he/she does not need to exceed
it after a certain threshold.

4.2 System Architecture

Fig. 2 shows the main internal block diagram.
The important parts of the AAL system are
Patient and Fridge. A Fridge in turn is com-
posed of Food, Display, Alarm and Controller
blocks. The Food block contains information
about the food items in the Fridge, the calo-
ries contained by each item, the total number
of calories the Patient has accumulated and the
calories threshold that should not be surpassed.
The fridge Display is used to show the amount
of calories consumed by the Patient. The Alarm
is activated in case the Patient’s calories level
surpasses a certain threshold. The Controller
transfer the information from the Patient to the
concerning elements and back to the environ-
ment.

The communication between different blocks
takes place through ports. A port bears a type.
In OMEGAZ2, the type of a port must be an In-
terface. The type specifies the set of requests (op-
eration calls and/or signals) that are transferred
between parts (components) by means of ports
and connectors. In Fig. 2, the Patient block has
a standard port named pToFridge. This port has
a contract named Patient2Fridge and is acting
as a provided interface of the Patient block. The
interface Patient2Fridge defines an operation
eat(int item, int quantity). This interface
is then used as a type of pToFridge port. At the
same time the Patient block has a required in-
terface named pFromPatient. For the full system
architecture, the reader is referred to [17].

Rational Rhapsody Developer v7.5.22 is used
to create OMEGA2 models. OMEGA2 mod-
els use a profile and a predefined library
provided with the tool (OMEGA2.sbs and
OMEGA2Predefined.sbs). Any other UML2.2 or
SysML1.1 editor supporting profiling and ex-
porting in the XMI2.0 standard compatible with
Eclipse ecore can be used for OMEGA2 models.

2http://www.ibm.com/developerworks/rational /

bd [«rootn block] Main [Architecture]

1 fridge:Fridge

pFromPatient
O—{]

1 patient:Patient
pToFridge
Patient2Fridge

sim [block] Patient [StatechanOfPatient])

Ibagin
selecteditems-=getAt(l) = 5;
selecteditems->getAl1) = 5

salecteditems->getAt]

selecteditemns->getAt(d) = 5,
ready[selecteditems->getAt{0) = 0] selecteditems-=getAtid) = 5,
begin natinitialized = 1

Ot
Lﬁ Patient2Fridge
go | Fridge2Patient, ge,
(

" 3 .
1 pToPatient dgy) ge. C

Figure 2: Main Internal Block Diagram

The Fridge interacts with the AAL system.
Fig. 3 shows the internal block diagram for the
Fridge block. Each of the four blocks behaviors
is modeled in a separate state machine diagram.

b3 [biock] Fridge [Architecture]

1 food:Food

pFromControlier — LT

5 C O 10
Controlier2Food ‘Controller2Display I
aniroller , .
FS pToFood| Controler2Food pToDisplay | Controller2Display

1T controller:Controller ‘Jl’:l
B —
pFromFood _ |pToslam
o) O
Food2Controller Controller2Alanm Q
pFramController | Controller2Alarm
Q (=] 17 alarm:Alarm B

L O

{}
pFromPatient |

PatientzFridge

pToPatient
‘{* GontrollerzFridge

pToPalient| Alarm2Fridge

T

pFromPatient | Patient2Fridge

Figure 3: Fridge Internal Block Diagram

Fig. 4 shows the state machine diagram for
the Patient block. Here the exchange of infor-
mation between Patient and Fridge takes place.
We identify the number and quantity of each item
present in the Fridge. If a certain product still
present in the Fridge is chosen by the Patient
then the information is communicated with the
Fridge. Otherwise the Fridge is empty and the
Patient will wait to be refilled. Also, if the Alarm
of the Fridge is raised due to high intake of calo-
ries, the Patient stops eating and waits for the
system to be unblocked.

The Food block models the knowledge of the
Fridge about what it contains. We define the
number of items and the amount of calories asso-
ciated with each item present in the Fridge. We
then calculate the total number of calories accu-
mulated by the Patient. If the total number of
calories is greater or equal to the maximum calo-
ries allowed for the Patient, then a message is
sent and the alarm is raised or if the total number
of calories is greater than the maximum calories

pToPatient | FridgezPatient. Alamn2Fridge, Gonlroller2Fridge

ToFridge | eati0, 1); d

ol i t’v;L{g] oo ready[selectedltems-=getAt(F)
= selectedltems->getAt(0) - 1 InUs begin
end nise ploFridge ! eal(d, 1%

salecteditems-=getAt(3)
= selectediiams->gatAt(3) -

raaﬁy'| selecteditems-=getAt(1) = D]] and
begin’

pToFrdge | eat(1, 1); —J
selectedilems->gelAl(1) begin -
= selectedltems->gatAt(1) - 1 2

en:ee:e ms->gathit{1) pToFridge ! eat(d, 1)

salecteditems-=getAt{d)
ready{selected tems->getAt(2) = 0],

begin
pToF]nEge TeatZ, 1y,
" I AL(Z]

getAt]
= gelecteditemns->getAt(2) - 1

i
o [selecteditems-=getAtD) == 0 and
fin selecleditemns->gatAt(1) == 0 and
salecteditems->getAt(2) == 0 and
lecteditems-

getAt(3) == 0 and
End selecteditems->getatid) == 0]

Figure 4: Patient State Machine Diagram

allowed minus 500, then the Patient is warned
with a message that the calories level is approach-
ing the maximum amount of calories allowed.

5 PROPERTIES VERIFICATION
OF AAL SYSTEM

The properties of AAL system that we modeled
and verified are obtained after RELAX process is
applied on its traditional requirements. RELAX
is a requirement engineering language for self-
adaptive systems that incorporates uncertainty
into the specification of these systems. Typical
textual requirements prescribe behavior using a
modal verb such as SHALL that defines func-
tionality that a software system must always pro-
vide. For self adaptive systems such as AAL,
however, environmental uncertainty may mean
that it is not always possible to achieve all of
those SHALL statements; or behavioral uncer-
tainty may allow for trade-offs between SHALL
statements to RELAX non-critical statements in
favor of other, more critical ones. Therefore, RE-
LAX identifies two types of requirements: one that
can be RELAX-ed in favor of other ones called
variant or RELAX-ed and other that should never
change called invariant. Below are the properties
to be verified.

= aelecteditems->getAtid) 4 1

= Q)

)=o)

5.1 Traditional/Relax-ed
Requirement

We have studied two RELAX-ed requirements:

e The fridge shall detect and communicate with
food packages

RELAX-ed version of this requirement is as fol-
lows:

e Property 1 : The fridge SHALL detect and
communicate information with AS MANY
food packages AS POSSIBLE

Below are the uncertainty factors associated
with the given RELAX-ed requirement.

ENYV: Food locations, foot item information
(type, calories), food state (spoiled and un-
spoiled)

MON: RFID readers, Cameras, Weight sensors

REL: RFID tags provide food locations and food
information; Cameras provide food locations
(Cameras provide images that can be ana-
lyzed to estimate food locations), Weight sen-
sors provide food information (whether eaten
or not)

T echeevery ook ProparyT

Figure 5: Propertyl State Machine Diagram

The satisfaction of this requirement con-
tributes to the balanced diet of the Patient. We
would like to verify this property as it is impor-
tant for the AAL system to know about as many
food items as possible present in the Fridge.
Fig. 5 shows the state machine diagram of the
Property 1. In this property, we identify the num-
ber of items consumed by the Patient and the
total number of items in the Fridge. First of
all, we verify the identity of the Patient, if the
person is identified as the Patient, then we cal-
culate the number of items consumed. We then
calculate the number of items left in the Fridge

which is equal to the sum of all the items present
in the Fridge. Then in the last step, we calcu-
late if ((total number of items - number of items
consumed - number of items left) >-1) and ((to-
tal number of items - number of items consumed
- number of items left) <1), it means that we
have reached the <<success>> state by having
information about all the items present in the
Fridge, i.e. it should be 0 (which means that
there is no information loss). Inversely, if it is
less than -1 and greater than 1, then it means
that we are missing information about some of
the items present in the Fridge and the observer
passes into the <<error>> state.

5.2 Invariant Requirement

We have taken two examples of invariants:

e Property 2 : The alarm SHALL be raised in-
stantaneously if the total number of calories
surpasses the maximum calories allowed for
the patient

sim [#obsarvers block] Proparyd [StatechanOfF ropertyd])

The alarm
|5 radsed

instantaneo
usly.

Idle

Imatch informal "initialized® by sal

Wait

‘ [aal.fridge food. totalCal == aal fridge food maxCal]
Warily

fmalch send @ Defaull:eat

[aal patient @ End]

wBfrars
Errar

#5UCCESE®
Success

Figure 6: Property2 State Machine Diagram

This property ensures that the Patient
should stop eating when the total number of calo-
ries surpasses the maximum calories allowed and
that the Alarm should be raised. Fig. 6 shows the
state machine diagram of the property 2. This
requirement implies that the Alarm shall be im-
mediately raised as soon as the total number of
calories equals or surpasses the maximum calories
allowed for the Patient. If it happens then the
Patient should stop eating.

6 Verification Results

Until now, we have modeled the AAL system and
the properties to be verified on the model. It is
now time to verify these properties and in case
if there is error during its verification, simulate
it to find the error and then correct it in the
model. Fig. 7 shows the snapshot of the compila-
tion of the AAL model named AAL2. The AAL2
model is first exported into AAL2.xmi and then
using the ITFx toolset the AAL2.xmi is compiled
into AAL2.if.

Figure 7: XMI to IF Compilation

The AAL2.if is then compiled into an ex-
ecutable file i.e. AAL2.x. For the proper-
ties verification part, we run the model-checker
with the following options: AAL2.x -dfs -po
-me -ce 1n

While verifying the AAL model, the model-
checker has found several error scenarios. Any of
the error scenario can then be loaded through the
interactive simulation interface of the IFx toolset
to trace back the error in the model and then cor-
rect it. In order to debug a model, firstly we im-

Figure 8: Initial Simulation Interface

port it into the simulator as shown in Fig. 8. We
check the states of the observers in order to iden-
tify which property has not been satisfied. One
can observe in Fig. 9 that Property 2 fails. While
checking the state of the entire system for this
property, we discover that the error state con-
tained the maximum allowed number of calories
for the total number of calories consumed and
subsequently eat requests sent by the Patient.

This implies that the Alarm function of the in-
telligent Fridge doesn’t function properly. The
Alarm function of the Fridge is strictly linked to
its Food process and the Alarm is raised only if
the total number of consumed calories is strictly
superior than the maximum allowed; condition
which doesn’t satisfy the request that the Alarm
is raised as soon as possible. The correction con-
sists in raising the Alarm in case the total number
of consumed calories is equal to the maximum al-
lowed threshold. Once this error is corrected the
verification succeeds.

Figure 9: Error State Food Observer Simulation In-
terface

Figure 10: Model checking successful

Fig. 10 shows the result of the model-checker
on the correct model.

7 Conclusion

We have modeled the structural and behavioral
parts of an AAL (Ambient Assisted Living) sys-
tem. The modeling is done using Rational Rhap-
sody 7.5.2 with OMEGAZ2 profile which is used for
specification and verification of dynamic proper-
ties of models through observers. For the verifica-
tion and simulation part, we have used IFx which
is a toolset used for the simulation of OMEGA2
models and the verification of properties defined
on these models. We have verified two properties
of the AAL system using the IFx toolset. At first,
the verification results in errors which can then be
simulated through the interactive simulation in-
terface of the IFx toolset in order to identify the
source of the error and then subsequently correct
it in the model, after correcting the error in the

model, the verification results in the fulfillment of
all the two properties.

The future work is centered around the use of
formal methods in the context of our integrated
approach [18].

In [7], we have investigated the use of goal
oriented concepts in combination with RELAX
for modeling the requirements of ambient sys-
tems. We have found a link between RE-
Lax and SysML/Kaos [8], which is a goal ori-
ented approach based on KA0S and which ex-
tends the SYSML meta-model with goal con-
cepts. Based on that, we have concluded that
these two approaches are complementary with
each other and RELAX can benefit from the
ContributionNature and ContributionType
concepts of SYSML/KA0s.

This work motivated us to take benefit from
the OMEGAZ2/IFx. In our integrated approach,
we are interested in RELAX requirement which
we obtain by using the RELAX process. We
then refine the RELAX requirement with the
ContributionType and ContributionNature of
SYsML/KAo0s which is a SYSML profile with the
goal concepts integrated into it, the reader is re-
ferred to [7] for an insight on our work on RELAX
and SYSML/Kao0s. The RELAX requirement is
then verified by a test case and then the test case
can be refined by observer and then observer is al-
located to a state machine diagram. This whole
sequence of steps constitute our process.

REFERENCES

[1] http://www-2.cs.cmu.edu/~svc/

[2] Tulia Dragomir, Iulian Ober and David
Lesens. A Case Study in Formal System En-
gineering with SysML, ICECCS 2012,Pages:
189 - 198.

[3] Tulian Ober and Iulia Dragomir.
OMEGA2: A new version of the pro-
file and the tools, ICECCS 2010, DOI
10.1109/ICECCS.2010.59.

[4] Iulian Ober, Susanne Graf and Ileana Ober.
Validating timed UML models by simula-
tion and verification, International Journal on
Software Tools for Technology (2006) 8(2):
128145

[5] E. M. Clarke, O. Grumberg, and D. A. Peled,
Model Checking. MIT Press, 1999.

[6] Jon Whittle, Pete Sawyer, Nelly Bencomo,
Betty H.C. Cheng, and Jean-Michel Bruel.

RELAX : Incorporating Uncertainty into the
Specication of Self-Adaptive systems,RE Con-
ference 2009, Pages: 79-88.

[7] Manzoor Ahmad, Jean Michel Bruel, Régine
Laleau and Christophe Gnaho. Using RE-
LAX, SysML and KAOS for Ambient Systems
Requirements Modeling, Procedia Computer
Science Volume 10, 2012, Pages 474481.

[8] Christophe Gnaho, Farida Semmak. Une ex-
tension SYSML pour lingénierie des exi-
gences non-fonctionnelles orientée but. Revue
Ingénierie des Systemes d’Information, Vol
16/1, 23 pages, 2011.

[9] Kawtar Benghazi, Marfa Visitacién Hurtado,
Maria Luisa Rodriguez, Manuel Noguera. Ap-
plying Formal Verification Techniques to Am-
bient Assisted Living Systems, OTM 2009
Workshops, pp 381-390.

[10] Jirgen Nehmer, Martin Becker, Arthur
Karshmer and Rosemarie Lamm. Living as-

sistance systems: an ambient intelligence ap-
proach, ICSE ’06, Pages 43-50.

[11] Ludovic Apvrille, Pierre de Saqui-Sannes,
Ferhat Khendek. TURTLE-P: a UML profile
for the formal validation of critical and dis-
tributed systems, Software and System Mod-
eling 5(4): 449-466 (2006).

[12] http://www.it.uu.se/research/group/
darts

[13] I. Ober and I. Dragomir, “Unambiguous
UML Composite Structures: The OMEGA2
Experience,” in SOFSEM 2011: Theory and
Practice of Computer Science, Springer,
2011, vol. 6543, pp. 418-430.

[14] S. Bornot and J. Sifakis, “An algebraic
framework for urgency,” Information and
Computation, vol. 163, 2000.

[15] M. Bozga, S. Graf, I. Ober, I. Ober, and
J. Sifakis, “The IF Toolset,” in Formal Meth-
ods for the Design of Real-Time Systems,
Springer, 2004, vol. 3185, pp. 131-132.

[16] OMEGA2-IFx for UML/SYsML v2.0 Profile
and Toolset, User Manual Document v1.1

[17] Manzoor Ahmad, Tulia Dragomir. AAL Sys-
tem Properties Modeling and Verification Us-
ing OMEGA2/IFx, Internal Report, Univer-
sité de Toulouse.

[18] Jean-Michel Bruel, Nicolas Belloir and Man-
zoor Ahmad. SPAS: un profile SYSML pour
les systemes auto-adaptatifs, CNRIUT, Lille
June 2009.

