
 

Building Bridges Between Systems and Software 
with SysML and UML

Matthew Hause 
ARTiSAN Software Tools 

Eagle Tower, Suite 701 
Cheltenham, Gloucestershire,  

GL50 1TA 
United Kingdom 

Matthew.Hause@artisansw.com 

Francis Thom 
ARTiSAN Software Tools 

Eagle Tower, Suite 701 
Cheltenham, Gloucestershire,  

GL50 1TA 
United Kingdom 

Francis.Thom@artisansw.com 
Copyright © 2008 by Matthew Hause, Francis Thom. Published and used by INCOSE with permission. 

Abstract. Systems are becoming increasingly reliant on software. One of the roles of the systems 
engineer is to perform a trade-off analysis of the different architectural solutions to a problem, 
and allocate requirements to different engineering domains within that solution, including 
software. It is important to investigate effective ways of establishing traceability from the system 
definition to the software and other requirements. The Systems Engineering Language, (SysML), 
which is based on the Unified Modeling language (UML), is being increasingly used by systems 
engineers to model systems. As well as providing system requirements, SysML models can be 
used to define the system architecture to be used by the software engineers. In this paper, we will 
demonstrate how SysML and UML can effectively work together to provide an effective 
handover between systems and software. 

Introduction 
The phrase "Essentially, all models are wrong, but some are useful" has been attributed to 

Professor George E. P. Box, (Box, Draper, 1987). This is appropriate because modeling by its 
very nature creates an incomplete replica of the problem or system. Modeling systems is based 
on abstracting the characteristics of a domain of interest (e.g. the problem or the solution) to the 
modeler and ignoring the others. In computer science, abstraction is the mechanism and practice 
of factoring out details so that one can focus on a few concepts at a time (Illingworth, et al, 
1991). Depending on the level of abstraction, and the focus of concern, there will be different 
viewpoints that can be applied to the system. In addition, each level, and each viewpoint will 
have its own unique elements. An example familiar to most will be internet mapping systems 
such as Google™ Earth or Mapquest. At the highest level, complete countries are visible with 
only the major roads available. As the zoom level is increased, addition roads and information 
become visible until individual buildings can be seen. For SysML, some viewpoints will provide 
information to be allocated to several engineering domains (e.g. hardware, software, procedural 
or mechanical etc.). For modeling centered on a particular domain, modeling will involve 
“abstracting the abstraction” to take into account the information that is appropriate to the 
viewpoint and the domain. Additional information, application of standards, constraints, etc, will 
then be added to the model. In other words, systems, software and hardware engineers will all 
look at a problem from their own points of view. 

The Development Lifecycle. From the start of the program, there is always a "product" to 
deliver to the customer that takes on different, increasingly detailed forms, over time and as work 
gets approved. The baseline is established at a milestone event, and typically given these names: 

 

mailto:Matthewh@artisansw.com
mailto:Fran.Thom@artisansw.com


 

• "as required" (aka Functional baseline) - the requirements specification. 

• "as designed" (aka Allocated baseline) -  the design specification, which might be high, 
and later, detailed design. 

• "build-to" (aka the development baseline) - manufacturing drawings or source code, etc. 

• "as-built" baseline (aka Product baseline) - ready to test executables. 

• "as-tested" baseline (post verification/validation). 

Increasingly, models are built at all stages to communicate the user requirements, define system 
requirements, design and document system implementation, and to verify and validate the 
system. Establishing traceability between these different models can be challenging. 

The Role of the Systems Engineer. The systems engineering process is usually comprised of 
the following seven tasks: State the problem, Investigate alternatives, Model the system, 
Integrate, Launch the system, Assess performance, and Re-evaluate. These tasks can be 
summarized with the acronym SIMILAR: State, Investigate, Model, Integrate, Launch, Assess 
and Re-evaluate. This Systems Engineering Process is shown in Figure 1. It is important to note 
that the Systems Engineering Process is not sequential. The functions are performed in a parallel 
and iterative manner. INCOSE, (2007). 

 
Figure 1. The Systems Engineering Process (Bahill, Gissing, 1998). 

Part of this process is the allocation of the problem areas to engineering domains, (e.g. hardware 
engineering, mechanical engineering or software engineering etc). Each domain provides a 
method of solving a specific part of the overall system’s requirements, and they are generally 
used in combination. Models are central to the exercise of trade-off analysis and evaluation of 
alternatives, as well as enabling communication throughout the process. In the rest of this paper, 
we will concentrate on the software domain as defined by UML. 

SysML and UML 
In March 2003, the OMG issued a Request for Proposal (RfP) for a customized version of 

UML suitable for Systems Engineering written by the OMG Systems Engineering Domain 
Special Interest Group (SE DSIG). Friedenthal, Burkhart, (2003) gives early history on the 
development of the UML for SE RFP. The customization of UML for systems engineering is 
intended to support modeling of a broad range of systems which may include hardware, 
software, data, personnel, procedures and facilities. The goal is to provide a “standard modeling 
language for systems engineering to analyze, specify, design and verify complex systems, 
intended to enhance systems quality, improve the ability to exchange systems engineering 
information amongst tools and help bridge the semantic gap between systems, software and other 

 



 

engineering disciplines” (OMG SysML, 2003). There was only one technology submission to the 
RfP, called OMG SysML. This has been accepted by the OMG and the finalization task force 
was completed in March, 2007 and version 1.0 officially issued in September 2007. The SysML 
Revision Task Force (RTF) was chartered at the OMG San Diego Meeting on March 30, 2007. 
The RTF will continue to propose refinements to the v1.0 specification for approval by the 
OMG. The plan will be to issue a minor revision (e.g., OMG SysML v1.1) in 2008. 

For the sake of brevity, and the fact that the UML specification is 1000 pages and the SysML 
specification is 300 pages, we will not attempt to describe the two languages in detail. For more 
information on SysML, see OMG, (2007b) and Hause, (2006a). For more information on UML, 
see OMG, (2007a). 

Why model? Before creating a model, several questions must always be asked. What question 
are we trying to answer? What purpose does the model serve? What is the extent of the model? 
How do we know when we are done? To prevent the length of this paper extending to that of a 
small book, we will limit ourselves to two examples: using SysML to define software 
requirements and ensure traceability, and using SysML to define the environment in which the 
software will be deployed. For both examples, the main requirement is that there will be clear 
and obvious mechanisms for establishing continuity and traceability between the systems and 
software models. At this point, it will be useful to include additional details on SysML 
mechanisms for creating relationships within and between model elements. 

SysML Cross-Cutting Mechanisms 
Separation of concerns is the process of breaking a system into distinct features that overlap 

in functionality as little as possible (Dijkstra, 1974). A concern is any focus of interest in a 
system. Ideally, most components in a system will perform a single, specific function. 
Additionally, they often share common, secondary requirements with other system elements. 
These secondary requirements are said to cross-cut into the primary requirements. These are 
known as cross-cutting concerns. Examples include safety, traceability, timeliness, and risk. 
SysML supports two generic mechanisms for mapping/cross-cutting; these are requirements and 
allocation. Both define relationships that cross-cut standard separation of concerns. However, 
they differ in that allocation is a forward mapping mechanism (e.g. from system analysis to 
system design), whilst requirements is a backwards mapping mechanism (e.g. from the design 
model to the design requirements) in relation to the development lifecycle. For more information 
on cross-cutting concerns, see Hause, (2006b). 

Requirements. A requirement specifies a capability or condition that must (or should) be 
satisfied. A requirement may specify a function that a system must perform or a performance 
condition a system must achieve. They are cross-cutting in that the requirements viewpoint can 
relate to all other viewpoints. Both SysML and UML provide a graphical means of embodying 
requirements, inherent in the model. SysML provides modeling constructs to represent text based 
requirements and relate them to other modeling elements. The requirements diagram can depict 
the requirements in graphical, tabular, or tree structure format. A requirement can also appear on 
other diagrams to show its relationship to other modeling elements. The requirements modeling 
constructs are intended to provide a bridge between traditional requirements management tools 
and the other SysML models. Relationships include derive, refine, satisfy, trace, verify, and 
copy. Figure 2 shows a requirements diagram for a Cruise Control system.  

 



 

«block»
Cruise Control System

«requirement»

txt
The CCS must allow a driver to enable the vehicle to maintain a
desired speed.

REQ_CCS_01

Maintain Speed

«testCase»
[Package] Maintain Speed - with flows

Maintain Speed

«requirement»

txt
Once the CCS is engaged, to activate cruise control the driver
can 'set' the desired speed. Once this is set the CCS shall take
over control of the throttle.

REQ_CCS_05

«requirement»

txt
When cruise control is engaged, the driver must be
able to increment or decrement the desired speed
(i i t f 1 MPH) Th d i t l h

REQ_CCS_06

«requirement»

txt
When cruise control is engaged, the driver must be able to
increment the desired speed in increments of 1 MPH.

REQ_CCS_06a

req [Package] Cruise Control System [Fragment]

«refine»
«satisfy»

«verify»

«satisfy»

«deriveReqt»

«satisfy»

 
Figure 2. Requirements Example for a Cruise Control System 

Requirement REQ_CCS_01 is satisfied by the Maintain Speed activity and Cruise Control 
System block, refined by the Maintain Speed use case, and verified by the Maintain Speed test 
case. REQ_CCS_005 is a derived requirement, and REQ_CCS_6a is a sub-requirement of 
REQ_CCS_6. 

Allocation. Allocation is the term used by systems engineers to denote the organized cross-
association (mapping) of elements within the various structures or hierarchies of a user model. 
The concept of "allocation" requires flexibility suitable for abstract system specification, rather 
than a particular constrained method of system or software design. System modelers often 
associate various elements in a user model in abstract, preliminary, and sometimes tentative 
ways. Allocations can be used early in the design as a precursor to more detailed rigorous 
specifications and implementations. The allocation relationship can provide an effective means 
for navigating the model by establishing cross relationships, and ensuring the various parts of the 
model are properly integrated. These take the form of internal links created in the model. SysML 
provides of means of displaying these on diagrams using call-out notation – notes that can be 
made visible on diagrams detailing the allocations. Cross-reference tables and matrices can also 
be generated based on the model information. Figure 3 shows an allocation table for a Cruise 
Control System. 
[Package] CC System [1]  
    
 Allocated From Relation Allocated To 

 «part» CC Disp  Allocate «Activity» Do Initialisation tests (CC 
Model::Analysis::Behaviour::Activities) 

 
«Class» eCruiseControlPanel (CC 
Model::Design::Software::External Interface) Allocate «block» CC IO Card (CC 

Model::Analysis::Structure::Vehicle::CC System) 

 
«Class» eEMUIF (CC Model::Design::Software::External 
Interface) Allocate «block» CC IO Card (CC 

Model::Analysis::Structure::Vehicle::CC System) 

 
«Class» eTransmissionMonitor (CC 
Model::Design::Software::External Interface) Allocate «block» CC IO Card (CC 

Model::Analysis::Structure::Vehicle::CC System) 

 
«Class» eBrakePedalMonitor (CC 
Model::Design::Software::External Interface) Allocate «block» CC IO Card (CC 

Model::Analysis::Structure::Vehicle::CC System) 

 
«Class» cThrottle Controller (CC 
Model::Design::Software::Control) Allocate «block» CC Motherboard (CC 

Model::Analysis::Structure::Vehicle::CC System) 
 «Class» pAccelerationProfile (CC Allocate «block» CC Motherboard (CC 

 



 

Model::Design::Software::Persistence Support) Model::Analysis::Structure::Vehicle::CC System) 

 
«Class» pCalibration Manager (CC 
Model::Design::Software::Persistence Support) Allocate «block» CC Motherboard (CC 

Model::Analysis::Structure::Vehicle::CC System) 

 
«Class» cSpeedMonitor (CC 
Model::Design::Software::Control) Allocate «block» CC Motherboard (CC 

Model::Analysis::Structure::Vehicle::CC System) 

 
«Activity» Decrement Speed (CC 
Model::Analysis::Behaviour::Activities) Allocate «block» Cruise Control System (CC 

Model::Analysis::Structure::Vehicle::CC System) 

 
«Activity» Disengage CC (CC 
Model::Analysis::Behaviour::Activities) Allocate «block» Cruise Control System (CC 

Model::Analysis::Structure::Vehicle::CC System) 

 
«Activity» Do Initialisation tests (CC 
Model::Analysis::Behaviour::Activities) Allocate «block» Cruise Control System (CC 

Model::Analysis::Structure::Vehicle::CC System) 

 
«Activity» Engage CC (CC 
Model::Analysis::Behaviour::Activities) Allocate «block» Cruise Control System (CC 

Model::Analysis::Structure::Vehicle::CC System) 

Figure 3. Allocation Table 

The allocation table shows different types of allocation such as structural and functional. The 
activities are allocated to the structural elements, (Decrement Speed to the Cruise Control 
System), software to hardware, (pCalibration Manager to Motherboard), etc. 

System to Software Handover 
Requirements In, Requirements Out. Here we are defining a formal handover as an agreement 
between system and software engineering. Even today, many organizations’ development 
processes reflect their organizational structure. Some may say processes are often compromised 
by organizational structure to the extent that system and software engineers communicate (aka 
argue) through requirements specifications with protracted change management processes to 
further delay the successful handover. SysML does allow such formal handovers to take place 
but with one important difference. Often a software specification will contain too much detail 
and be lacking in rationale as to why decisions have been made. Modeling the software 
specification (i.e. a collection of SysML Requirements tracing back to the system design) within 
the system model and handing this model over to software engineering to augment with the 
software analysis and design, provides software engineering with the contextual information they 
were previously lacking. Used in the way SysML provides a model-centric approach to formal 
requirements handover. If the software engineering discipline is external from the system 
engineering organization, then the same mechanism of creating SysML requirements in the 
model can be performed and exported from the system model (in document form) and handed 
over to the software engineering organization. A good working relationship should be 
established between the two organizations to ensure issues can be resolved quickly. 

Requirements Traceability. As stated previously, a software requirements specification of 
some description will normally be created as part of the systems engineering process. Integrating 
these requirements into the SysML/UML model will greatly improve traceability. <<Trace>> 
relationships can be added from the requirements to the source SysML model items indicating 
their origin. <<Satisfy>> and <<Refine>>relationships can then be added from the UML model 
items to the requirements to form an indirect link between the SysML and UML models, thus 
forming a less tightly coupled set of relationships. 

Object Oriented Modeling. Using an object oriented approach; the system is decomposed into 
objects. Using encapsulation, each object is allocated responsibilities according to its main goal. 
Responsibility corresponds to the information it holds, its behavior, and the relationships it has 
with other objects to satisfy its goals. In UML, objects are grouped into classes containing 
attributes, operations, and associations and are modeled on the class diagram. In SysML, blocks 

 



 

contain values, operations and associations and are modeled on the Block Definition Diagram 
(BDD). The internals of each block are then documented on an Internal Block Diagram (IBD). 
This includes its parts, ports, connectors, and flows. Another approach is to model system 
behavior independently. Activities can be identified and documented as a hierarchy or a flat 
structure. Activity diagrams can then be created to model the order of activities, conditional 
elements and the interchanges between the activities. In parallel or iteratively, the structure of the 
system is documented using the block diagrams described above. The activities can then be 
allocated to the blocks, and operations created for the blocks corresponding to those operations. 
Relationships between blocks can be added based on the requirement that the blocks 
communicate. Regardless of how it is done, the result is a set of blocks with behavior, attributes 
and relationships. 

Modeling software in SysML. Blocks can represent any level of the system hierarchy including 
the top-level system, a subsystem, or logical or physical component of a system or environment, 
as well as software entities. Consequently, a block can represent a well defined area of 
functionality or structure in the system. In the following sections, we will examine the different 
ways of mapping from the behavior, structure and data defined in a SysML model to a UML 
model. Of course, any mapping will not be one to one, because the level of abstraction must 
necessarily be at a higher level. Functional, data, and structural software elements in the SysML 
model will not be the same as in a UML model. The job of the systems engineer is to define the 
requirements of the software. The job of the software engineer is to define a well-architected 
software solution. Consequently, refactoring will need to take place. However, as SysML is 
based on UML, we will at least be mapping between similar paradigms. An example of mapping 
from SysML block to UML software using allocation is shown in Figure 4. 

 

Control

«control»
cThrottle Controller

Alg_Derivative
Alg_Integral
Alg_Proportional
ThrottlePosition
SpeedValue
NormalisedSpeedValue
SetSpeedValue ()
Reset ()
SetNormalisedSpeedValue ()
BrakeEngaged ()
GearShift ()
Suspend ()
Resume ()

cSpeedMonitor

CalibrationFactor
RawSpeed
SetRawSpeed ()
CalcNormalisedSpeed ()

External Interface

«boundary»
eBrakePedalMonitor

«boundary»
eCruiseControlPanel

SpeedSetPoint
Switch_Pressed ()
Set_Speed ()

«boundary»
eEMUIF

ThrottlePosition
Set_Throttle ()

«boundary»
eTransmissionMonitor

Persistence Support

pAccelerationProfile pCalibration Manager

WheelCircumference

1

1

Calibrates

1 1
Provides Speed

1

1

Stops Cruise Control
1

1

Driver Input

1

1

Profiles

1

1

Sets Throttle Position

1

1

Provides Readings

bdd [Package] CC System Software

«Block»
Cruise Control System

«Block»
«boundary»

allocatedFrom
Decrement ()
Disengage ()
Display Speed ()
EMU Message ()
Engage ()
Engage Brake ()
Increment ()
Resume ()
Set Speed ()
Shift ()
Suspend ()

allocatedTo
CC Motherboard
External Interface

Interface

«Block»
«control»

allocatedFrom
Error
Maintain Speed
Operate Cruise Control
Power Off
Power On
Calculate Throttle Position

allocatedTo
CC Motherboard
Control

Control

«Block»
«entity»

allocatedFrom
Log Error ()
Load Acceleration Profile ()

allocatedTo
CC Motherboard
Persistence Support

Persistence

11
CCIF

1

1 CCCtrl

1

1

Perst

«part»
CCUnit : Cruise Control Unit

«part»
«multidropBus»
CANbus : CAN

«part»
«board»

CCUio : CC IO Card

CCDispIF

BrakeIF : Digital

CANIF
EngDisIF

SetIF

SusResIF
TransmIF : Analogue

EMUIF : RS232IncIF

DecIF

«part»
«board»

CCUmb : CC
Motherboard

CANIF

«part»
«multidropBus»
CANbus : CAN

«part»
«board»

CCUio : CC IO Card

CCDispIF

BrakeIF : Digital

CANIF
EngDisIF

SetIF

SusResIF
TransmIF : Analogue

EMUIF : RS232IncIF

DecIF

CCDispIF

BrakeIF : Digital

CANIF
EngDisIF

SetIF

SusResIF
TransmIF : Analogue

EMUIF : RS232IncIF

DecIF

«part»
«board»

CCUmb : CC
Motherboard

CANIFCANIF

 : EMU Message

 : AnalogueMessage

Gear : Analogue
«ItemFlow»

Figure 4. Mapping from Virtual Blocks to UML Packages and Hardware Platform. 

In Figure 4, the Cruise Control system is shown as being made up of 3 blocks – Control, 
Interface, and Persistence. Allocated functionality is shown in the allocatedFrom compartment 
on the block and lists the activities allocated to the block. The allocatedTo compartment lists the 
deployment onto the hardware platform (CC Motherboard) shown to the left, and to the software 
packages which are shown on the right. The software packages are then further elaborated into 
classes to realize the required behavior. In this case, the blocks represent the strict separation of 
concerns common to robustness diagrams, which are Control, Boundary, and Entity. In this 

 



 

simple example the mapping is straight-forward. This will not normally be the case. This 
example shows the system environment in terms of the hardware platform, and the software 
requirements as blocks. 

Functional.  
The main behavioral aspects of UML and SysML are use cases, activities, operations, flows, 

events and signals, states, and (for coordinating these) system interaction diagrams. 

Use cases. Use cases define testable system functionality from an outside-in perspective. Use 
cases can be mapped at the user, system and subsystem level (Cockburn, 2001). For large 
systems, use cases from the SysML model will not map directly to elements in the UML model. 
This is because the two models may be at different levels of abstraction. The SysML model may 
be concerned with the whole system of systems and the software model may only be concerned 
with the software part of a single system. Consequently, it is important to establish the use case 
scope. For example, a car may have the use case “Drive Vehicle”. This will involve the complex 
interaction of several systems described in sequence and activity diagrams, one of which may 
involve the operation of the cruise control system. The software engineer tasked with designing 
the cruise control software will then analyze the cruise control functional requirements and 
create a set of use cases scoped to the level of the cruise control software. For smaller systems, 
user and subsystem use cases describing the software functionality of a system may not need to 
be redefined by the software engineer. 

Activities. Activities represent the basic unit of behaviour that is used in activity, sequence and 
state machine diagrams. Activity modeling emphasizes the inputs, outputs, sequences, and 
conditions for coordinating other behaviors. There are too many types and sub-types of activities 
and actions in the UML and SysML specifications to cover in a single paper, so we will consider 
the activity as a generic concept. The activity diagram is used to describe the flow of control and 
flow of inputs and outputs among actions. Activities will describe the functional characteristics 
of the structural elements (blocks, parts) to which they are allocated. In the UML model, they 
will map to use case capabilities of the systems corresponding to the SysML blocks. At the lower 
level, they could also map to classes and operations. In modelling the activities for a vehicle, the 
activity “Maintain Speed” is defined. The cruise control system will require several classes and 
operations in the software model to realise this behaviour. It is therefore useful to define a 
“Maintain Speed” use case for the software model to define the require software functionality. 
The “Maintain Speed” use case in the software model refines the “Maintain Speed” activity in 
the system model. On the other hand, the activity “update throttle” may only require an operation 
to send the throttle command from the cruise control to the engine management system and 
would not require a use case to describe its functionality. 

Block Operations. Operations owned by a block correspond to services, capabilities, and/or 
functionality provided by the block. This will normally be implemented by a combination of the 
different domains that will map to the block. It will then be necessary to separate out the portions 
of the behavior that will be implemented in software. For blocks describing software intensive 
capabilities, again, this will depend on the level of abstraction at which the block is modeled, as 
described above in the activity section. As an operation normally involves a client server 
relationship, the requesting element will need to be considered. Often a single high level 
operation will map to the behavior described in an entire sequence diagram to realize the high 
level goal. 

 



 

Flows, Signals, and Events. In SysML, flows can be typed by value types, data types, blocks 
and signals. These will correspond to the flow ports specified at each end of the connector 
describing the interface. These will be covered later in the section on hardware/software 
interfaces. Events are an indication that something has occurred in the system such as a message 
being sent or received that may potentially trigger effects by an object (OMG, 2007a). As these 
are atomic in nature, they will normally map directly to an event in the UML model. As they are 
normally connected to an effect, as described earlier, it will be necessary to consider the effect in 
the UML model. Signals are specified by a signal object; whose type represents the kind of 
message transmitted between objects, and can be dynamically created. The receipt of signals 
may be bound to activities, state machine transitions, or other behaviors. For communications 
systems, signals travel along an instance of a connector, originating in a required port and are 
delivered to a provided port. They can also be broadcast to multiple ports. Like events, signals 
can also be considered atomic and will usually map directly to the UML model. Likewise, it will 
also be necessary to consider any linked state transitions or behavior invocations. 

State Modeling. State modeling will be problematic in that a SysML state machine may 
represent the behavior of a complete software system. It is in fact best practice to create this 
model for the software to be implemented as it can form the basis of the system lifecycle tests. 
However, the state machine as a whole will not map to a single class. The exact method for the 
mapping will correspond to the element that owns the state machine. For state machines modeled 
at a lower level of abstraction, they will map to ‘controller’ classes in the software model, as 
shown in Figure 5. 

 

stm [Block] Cruise Control System

Fault
do : Log Error
do : Disengage

Operating
do : Maintain Speed
Decrement Reqd Speed/Decrement Speed
Increment Reqd Speed/Increment Speed
Accelerate Vehicle
Set Speed/

Accelerating
do : Resume

Suspended
do : Suspend

Engaged

Idle

Power On

Cruise Control System

Engage/
Do Initialisation tests

C Cerror/.. .

D is engage/

Resume[(Set Speed <> 0)&
(Brake Not Engaged)]/

[Set S peed Reached]/

S et S peed/

S us pend/
[tes t  fa il] /

[e ls e ] /

P ower O ff/

P ower On/

Accelerate

Maintain Target Speed
SetSpeedValue/

Active

Initialize

Disengage

cThrottle Controller

when( On Switch )/

when( Com plete )/

SetSpeedValue/

when( Speed Reached )/

when( Accelerate Button )/

B rakeEngaged/

when( Off Switc h )/

when( Off Switc h )/

S us pend/

Res um e/

Figure 5. State diagrams for the Cruise Control System and Throttle Controller. 

In this example, the state machine for the cruise control needs to take into account all the various 
states and sub-states of the system as a whole such as Power On and Disengaged. The Throttle 
Controller need only be concerned whether it is engaged or disengaged, and has the additional 
state of performing an initialization. 

System interactions. System interaction diagrams in SysML are limited to Activity and 
Sequence diagrams. Communication diagrams are not currently included, and are not in fact 
currently possible as SysML has no instance model. Like the state machines, interaction 
diagrams will form the basis for system tests sequences, and will help to inform the UML model 
of required external behavior. Mapping to specific internal behavior of the required software is 
not normally applicable. 

 



 

Structural.  
Hardware/Software Interfaces and drivers. SysML ports have done much to help in the 
definition of interfaces for both systems and software engineers. It is worth summarizing the 
usage of the different types of ports available in SysML. Required and provided interfaces 
(lollipops, cup and ball) associated with standard ports in a SysML model describe services that 
will be provided and required by the block owning the port. These are normally used in 
command and control systems, and when systems have a client-server relationship. This clearly 
identifies the relationship between the parts/blocks as active and resulting in control, rather than 
simple data transfer. The distiller model example developed during SysML has examples of this. 
Figure 6 shows an IBD of the distiller system and controller. 

ibd [Block] Distiller [with Controller]

«block»
Distiller

DSClean_Out

DSExcess

«part»
bx1 : Boiler

«part»
drain : Valve

«part»
hx1 : Heat Exchanger

«part»
ui1 : Control Panel

«part»
cx1 : Controller

«part»
feed : Valve

Distiller User

IPower

ILamp ILamp

IPower

IValve

IValve

IValve

IValve

s1 : Residue

s2 : Residue

m3 : H2O

m4 : H2O

m1 : H2O

m2-2 : H2O

p1 : Power

b1 : Power

m2-1 : H2Om2-1 : H2O

 
Figure 6. Distiller System With Controller. 

Interfaces of this type also include Service Oriented Architectures (SOA), an increasingly 
prevalent architecture these days. Work is currently being done to integrate this concept into the 
UML Profile for DoDAF and MODAF. In general, standard ports and data type flow properties 
within flow specifications will map to ports on software parts. Note that classes used on SysML 
‘Standard’ ports should be flowed-down as they are but may be further refined by s/w 
‘wrapping’ a protocol around them for propagation throughout and out of the system. 

For data intensive systems, data structures can be created on a Block Definition Diagram 
(BDD) using data types to both create message hierarchies and to then type the flow port on the 
Internal Block Diagram (IBD). Usually, this takes the form of an inheritance hierarchy with the 
highest level data type in the hierarchy typing the port. Modeling in this way means you can 
easily add new messages and you do not have to change the flow specification when a new 
message is added, as sub-types within an inheritance hierarchy can flow through a port typed by 
the parent type. This is particularly useful when modeling a system at the level of needlines and 
where the item flows model the information exchanges. These ports can later be allocated to the 
communications ports typed as Ethernet, RS-232, etc. described further on. 

Looking at value versus block for typing ports, it will depend on the context and purpose of 
the definition. Consider the example of the distiller system where the flows specify the water in 

 



 

various forms is flowing through the system. To evaluate the high level system to spell out how 
the system works, fluid can be defined as a block in its various forms to type the flows and the 
ports between the different parts. This gives a clear view of how the system as a whole is meant 
to work. This is useful for mechanical engineers. One also needs to be aware for example, of 
whether the different parts will be reused. Take the valve for example; typing the ports on the 
valve by residue or H2O means that only one type can flow through them. Creating an 
inheritance hierarchy of fluid, sub-typed by H2O and residue, and typing the ports by fluid 
means the either H2O or residue can flow through them shown in Figure 6. 

If we then turn to how to monitor and control the system, we need to look at additional 
characteristics of the system, for example temperature, flow rate and so on. The systems engineer 
can then type this information as SI units to communicate with both the software and hardware 
engineers, also specifying the level of precision that is needed for the telemetry used to measure 
the system. The telemetry can then be specified as analog, digital, pulse counters and so on, and 
the appropriate telemetry can be acquired that meets the job. The software engineer can then use 
these definitions to define software conversion algorithms and types to process this telemetry. 
Figure 7 shows the Cruise Control external interfaces with analogue, digital, RS232, and other 
interfaces. 

ibd [Block] Vehicle [Driver Interface Connections]

«block»
Vehicle

«part»
PowSys : Power Subsystem

CCIF : RS232

CCIF : Analogue

GearShiftIF : Force AccelIF : Force

«part»
AccPedal : Accelerator

Pedal

ThrotIF : Force

«part»
BrakeSys : Brake Subsystem

CCIF : Digital

«part»
BrkPed : Brake Pedal

«part»
CC Sys : Cruise Control

System

EMUIF : RS232

TransmIF : Analogue
BrakeIF : Digital

«part»
GearSel : Gear Selector

TransmIF : Force

Driver

Driver

Select : Force
«ItemFlow»

«Connector» Accel : Force
«ItemFlow»

BrakeEngaged : Digital
«ItemFlow»

EMU : EMU Message

Set Throttle : AnalogueMessage

Gear : Analogue
«ItemFlow»

allocatedFrom
«Connector» Power-CC System

allocatedFrom
«Connector» Power-CC System

 
Figure 7.Cruise Control External Interfaces. 

User Interface. Hause, Thom (2007a), described in detail how Human Computer Interface 
(HCI) characteristics can be integrated into SysML and architectural framework models. As this 

 



 

subject is more than sufficient for a paper, if not a book, it would be best refer to that paper and 
its references for more information on the subject. Other papers on this subject were also 
presented at INCOSE IS 2007 including Bruseberg, (2007) and McKenna, (2007). 

Other Aspects 
Data. The specification of data sets is a contentious issue between systems and software 
engineers. This often takes the form of tables at the back of the specification that are difficult to 
translate into classes, attributes, and associations in a UML model. An ideal method for 
modeling data is the use of SysML data types to create a diagrammatic view of the data that is 
then used as the basis for automatic generation of the aforementioned tables. Of course, this does 
not mean to imply that software engineers are to dim to read a table and translate it into a class 
diagram. Instead, it suggests that the exercise is not necessary. 

Resolving System and Software Architectures 
Architecture-centric. Up until now, we have concentrated on the flow down of information 
from Systems Engineering into Software Engineering. Increasingly there are situations where 
either legacy or mandated software architectures exist that must be respected by systems 
engineers. Software architectures exist for different reasons than a system architecture e.g. 
performance-efficiency, maintainability and reusability. Typically these constraints are imposed 
on software engineering (sometimes self imposed) which are orthogonal to the constraints (e.g. 
requirements) placed on software engineering by systems engineers. Whilst systems engineers 
may also have to respect some of these constraints if they are required by the system 
stakeholders, they are not always required at the system level. System-level reuse is relatively 
immature compared to software reuse and is rarely asked for by a stakeholder. There are 
situations where what is perceived to be software architecture is in fact system architecture. An 
example is the evolving architectures used in Integrated Modular Avionics (IMA). IMA imposes 
a high degree of standardization, modularity and reuse of hardware (primarily to address 
hardware obsolescence) whilst offering enormous flexibility in the deployment of software. 
However, this flexibility should not only be exploited by software engineers, it is something that 
systems engineers must also exploit. The logical (behavioral) aspects within the system model 
should encompass and embrace the architecture called-up in the IMA standards. Figure 8 shows 
an example of IMA architectural elements. 

 
Figure 8. IMA Topology of Processing Elements and Internals of a Processing Element. 

 



 

Systems engineers that ignore software-intensive architectures run the peril of seriously 
complicating (if not compromising) traceability of information from the system model into the 
software model. SysML, being closely aligned and underpinned by the more software oriented 
UML, is an ideal vehicle for system and software engineers to co-develop an implementation of 
an overarching software-intensive architecture. Similar examples of this exist in the automotive 
industry under AUTOSAR and their proved success may result in analogous architecture-centric 
approaches being developed in other domains. See Thom, Hause (2006) for more information on 
IMA, and Korff (2006) for more information on AUTOSAR. 

Software Architecture in the System Model. System architectures such as IMA and 
AUTOSAR will result in the system behavioral model, if correctly documented, being structured 
into software-intensive SysML activities (e.g. representing partitions). This allows systems 
engineers to analyze these from many perspectives including performance-efficiency, safety, and 
to assess deployment configurations, activities that should not be left for software engineering to 
resolve. We will now focus on the mapping of information from a system model into an 
established i.e. legacy software architecture. It must be noted that the term legacy is used in its 
broadest sense meaning both an existing software implementation being updated by new 
requirements and a non-implemented architecture that is selected or desired for implementation – 
i.e. the choice of the software architecture has been made and it is now a legacy decision. In the 
situation of legacy architectures, system and software engineers must collaborate in developing 
an abstraction of the software architecture within the system model. This is best represented as 
UML artifacts (e.g. UML classes) structured to reflect the software architecture and then using 
all the allocation and traceability links provided by SysML (described above). 

The Importance of Process. 
The SysML allocation, traceability and other cross cutting mechanisms presented in this 

paper are not meant to replace a well written requirements specification. Rather, they are meant 
to enhance the traceability and impact analysis techniques already available to systems 
engineers. They provide a means of clarifying the intent of the requirements, as software 
engineers will already be familiar with most of the concepts behind the SysML models. As 
system and software development is iterative in nature, problems found in the software 
development phases can more quickly be fed back to the systems engineers for resolution. A 
good starting point for defining a process or integrating these concepts into an existing process is 
the Object Oriented Systems Engineering Methodology (OOSEM). This has been successfully 
adopted by several major companies. For more information, see Lykins, et al, (2000) and other 
information available at the OOSEM website http://syseng.omg.org. 

Helpful Hints. However, the mapping is done, it is imperative that a well defined process be 
specified elaborating how the mapping fits in to the overall process, whether it is suggested or 
mandatory, and how updates, modifications, change notes, etc will be handled. Indicators as to 
the level of abstraction and the nature of the SysML elements will also be helpful to the software 
engineer. For example, a set of stereotypes associated with blocks ports and connectors 
indicating whether they are hardware, software, virtual or other can help in the allocation of 
domains and clarify the intent. 

Adoption. Compared with UML, SysML is a relatively new language and although starting to be 
widely used, it will not have been used for an entire development lifecycle for any major 
projects. SysML has the advantage of its close association with INCOSE and the fact that most 

 

http://syseng.omg.org/


 

other notations available are either proprietary, or impractical for use on large scale projects. As 
with the integration of all new concepts, methodologies, and techniques, it is important to 
prototype the use of SysML on a non-critical project prior to full adoption. This ensures that 
lessons can be learned on how best to use SysML and how it can help communicate with both 
the stakeholders of the project as well as software, hardware, mechanical, etc engineers further 
downstream in the development lifecycle. 

So, will software engineers look at all this as systems engineers meddling in their area and telling 
them how to design software? Given the level of internal competition and conflict, I have found 
on some projects, it is a question worth asking. A well defined process can help. It should 
instruct the systems engineers how to describe the software functional requirements and 
constraints, and (when specified by the requirements) the architecture without straying into 
software design. Most importantly, it will tell them when to stop. Speaking as a systems engineer 
with many years of software engineering experience, I wish I had these capabilities thirty years 
ago when I started building systems. It is certainly preferable to the “Death By Words” approach 
to requirements or having to re-factor a functional decomposition model into an object oriented 
or component based approach. 

Conclusion 
This paper has spelled out how SysML to UML can be used together. Used effectively, they 

can increase communication between members of development teams, enable traceability, and 
manage change by providing mechanisms to analyze the impact of changes. They are based on 
project experience, discussion in training courses on SysML presented to students, and 
discussions at conference. SysML is a relatively new tool and techniques and uses for it are 
being investigated on an ongoing basis. It is hoped that the adoption of these techniques will 
improve system development, reduce miscommunication, reduce rework and clarify the true 
impact of system changes. As always, the authors would welcome feedback from any project that 
has implemented these techniques. 

References 
Bahill, A.T., B. Gissing, B., 1998, Re-evaluating systems engineering concepts using systems 

thinking, IEEE Transaction on Systems, Man and Cybernetics, Part C: Applications and 
Reviews, 28 (4), 516-527, 1998. 

Box, George E. P.; Norman R. Draper (1987). Empirical Model-Building and Response 
Surfaces, p. 424, Wiley. ISBN 0471810339, Page 424. 

Bruseberg, A. 2007. Human Factors Integration for MODAF: Needs and Solution Approaches, 
June, 2007 INCOSE International Symposium 2007 Proceedings. 

Cockburn, A., 2001, Writing Effective Use Cases, Addison, Wesley, Pearson Education, ISBN 
0-201-70225-8 

Dijkstra, Edsger, 1974, On the Role Of Scientific Thought, accessed online November, 2005 
from 
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD4
47.html 

DoD Architecture Framework Version 1.0 Volume I: Definitions and Guidelines 30 August 2003 
Dsouza, D. (2001). Model-Driven Architecture and Integration, Opportunities and Challenges 

Version 1.1, Available from www.omg.org. [Accessed November, 2006]. 

 

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html


 

Friedenthal, S., Burkhart, R. “Extending UML From Software To Systems,” Proceedings Of The 
INCOSE 2003 International Symposium, 2003. 

Hause, M.C., 2006a, The Systems Modeling Language - SysML, Sept 2006, INCOSE EuSEC 
Symposium 2006 Proceedings. 

Hause, M. C., 2006b, Cross-Cutting Concerns and Ergonomic Profiling in UML/OMG SysML, 
July 2006, INCOSE International Symposium 2006 Proceedings. 

Hause, M.C. and Thom, F., 2007a, HCI Aspects of SysML and Architectural Frameworks, June, 
2007 INCOSE International Symposium 2007 Proceedings. 

Hause, M.C. and Thom, F., 2007b, Bridging the Chasm – Tracing from Acrchitectural 
frameworks to SysML, June, 2007 INCOSE International Symposium 2007 Proceedings. 

IEEE, (2000). "Recommended Practice for Architectural Description for Software-Intensive 
Systems". Appears in IEEEstd 1471-2000. Available from www.ieee.org [Accessed 
November, 2006]. 

Illingworth, V., Glaser, E.L., Pyle, I.C., 1991, Oxford Reference Dictionary of Computing, 
Oxford University press, Walton Street, Oxford, 1991. 

INCOSE, 2007, http://www.incose.org/practice/whatissystemseng.aspx Available online, 
Accessed November 2007 

Lykins, H., Friedenthal, S., And Meilich, A. Adapting UML For An Object-Oriented Systems 
Engineering Method (OOSEM)”, Tenth Annual Int Symp INCOSE proceedings. 
Minneapolis, Mn, USA, July 16-20, 2000. 

Korff, A., 2006, AUTOSAR and SysML – a natural fit, 3rd European Congress ERTS – 
EMBEDDED REAL TIME SOFTWARE, 25, 26 & 27 January 2006 – Toulouse, France 

McKenna, B., Expanding Functional Analysis to Develop Requirements for the Design of the 
Human-Computer Interface, June, 2007 INCOSE International Symposium 2007 
Proceedings. 

OMG SysML™ Object Management Group (OMG), 2003, UMLTM for Systems Engineering 
Request for Proposal OMG Document: ad/03-03-41, Available from www.omg.org. 
[Accessed September 2003]. 

Object Management Group (OMG), 2007a. Unified Modeling Language: Superstructure version 
2.1.1 with change bars ptc/2007-02-03. [online] Available from: http://www.omg.org 
[Accessed September 2007]. 

OMG Systems Modeling Language (OMG SysML™), V1.0, 2007b, OMG Document Number: 
formal/2007-09-01, URL: http://www.omg.org/spec/SysML/1.0/PDF, Accessed November, 
2007 

Sommerville, I. And Sawyer, P., Requirements Engineering, A good practice guide, John Wiley 
and Sons, June 2000. 

Thom, F., Hause, M.C., 2006, Modeling Distributed Integrated Modular Systems Using the 
UML™ and the SysML™. 3rd European Congress ERTS – EMBEDDED REAL TIME 
SOFTWARE, 25, 26 & 27 January 2006 – Toulouse, France 

 
 
 
 
 

 

http://www.ieee.org/
http://www.incose.org/practice/whatissystemseng.aspx
http://www.omg.org/spec/SysML/1.0/PDF


 

 

Biographies 
Matthew Hause, Chief Consultant - Artisan Software Tools 
Matthew has been developing real-time systems for almost 30 years. He started out working 

in the Power Systems Industry, and has been involved in Process Control, Communications, 
SCADA, Distributed Control, Defence and many other areas of real-time systems. His roles have 
varied from project manager to developer. His role at Artisan includes mentoring, sales 
presentations and training courses. He has written a series of white papers on project 
management, Systems Engineering, and systems development with UML and SysML. He has 
been a regular presenter at INCOSE and several other international conferences. 

 
Francis Thom, Principal Consultant - Artisan Software Tools 
Francis has been developing real-time systems for the past 20 years. He started developing 

C3I Systems for Surface and Sub-Surface vessels. He has also worked on multi-role military and 
commercial avionics systems, on safety-critical railway signaling systems and On-Board 
Computers for space rockets. His roles have varied from team leader to developer. Francis has 
also worked on Process Improvement initiatives for a number of companies. His role at Artisan 
includes mentoring, sales presentations and training courses. He has written a series of white 
papers on Process Improvement, Systems and Software Engineering. He has been a regular 
presenter at INCOSE and several other international conferences. 


	Introduction
	SysML and UML
	SysML Cross-Cutting Mechanisms
	System to Software Handover
	Functional. 
	Structural. 
	Other Aspects
	Resolving System and Software Architectures
	The Importance of Process.

	Conclusion
	References
	Biographies

