25th anniversary annual INCOSE international symposium Seattle, WA July 13 - 16, 2015

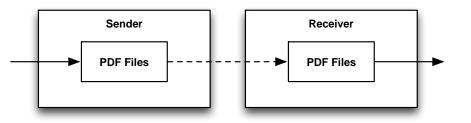
A modeling pattern for layered system interfaces

Peter Shames Marc Sarrel Jet Propulsion Laboratory California Institute of Technology INCOSE International Symposium July 15, 2015

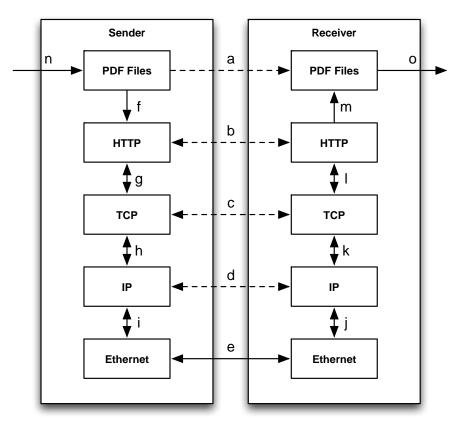
© 2015 California Institute of Technology. Government sponsorship acknowledged.

Overview

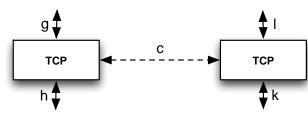
- Interfaces are the heart of systems engineering.
- In many kinds of systems we must specify and realize an interface at several levels of abstraction simultaneously.
- All levels must be correct for the interface to be correct as a whole.
- This model is well demonstrated by the success of computer network protocol stacks, e.g. the OSI model.
- In this presentation, we'll show one way that layered interfaces, using OSI as an example, can be represented in SysML.
- We hope to lay the foundation for the future application of this layering pattern to other forms of interfaces like electrical, mechanical, thermal, etc.

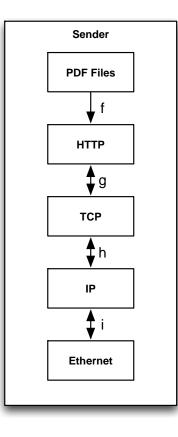


Motivation


- This work came out of a task to re-engineer the three spacecommunication networks run by NASA.
 - Deep Space Network
 - Near Earth Network
 - Space Network (TDRSS)
- Give space missions a unified interface to the capabilities and services of those three networks (planning, scheduling, uplink, downlink, etc).
- Share implementation and operations of those capabilities and services across the three networks.
- Needed to model multiple ways to implement a given data exchange.
- Same technique quickly found application in integrating the flight with the ground system on a human spaceflight mission (i.e. Exploration Flight Test-1).

A Simple Example




- Send a PDF file from A to B.
- This is the requirement, what the user sees.
- It's implemented with HTTP, TCP, IP and Ethernet.
- Each component is connected both horizontally and vertically.

We Will Control the Horizontal We Will Control the Vertical

• We can slice this matrix in either direction.

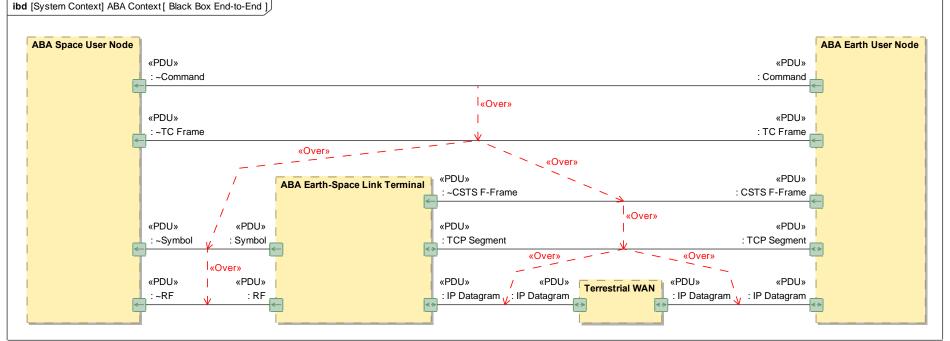
- Separation of concerns.
- We can focus on just the TCP layer.
 - How it is connected (horizontally).
 - How it behaves (horizontally).
- We can focus on just the Sender.
 - How it is connected (vertically).
 - How it behaves (vertically).
- Structure and behavior work both vertically and horizontally.

Concerns

- Project model in ways that are relevant to stakeholders.
- Viewpoints that address concerns, per ISO 42010.

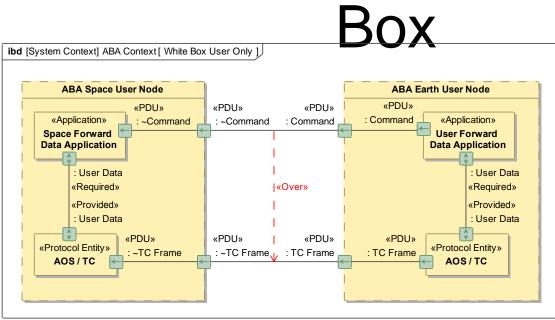
Concern	View
1 What is the end-to-end construction system in terms of major elements?	end-to-End black box view
2 What is the specific stack of protoce each element?	
3 What is the behavior within a given layer?	Protocol Protocol state machine view
4 What are the standards or specification govern the behavior of each layer?	tion that Interface binding view
5 How are the protocol stacks deploy end in order to meet the system rec	ed, end-to- uirements? End-to-End white box view
What is the end-to-end behavior or 6 characteristics along a given connected constrained by lower-level connected	ctor as End-to-end constraints and

sium


A Tale of Two Box	kes – Black
Box	INCOSE Marcaller
ibd [System Context] ABA Context [Black Box End-to-End]	
ABA Space User Node	ABA Earth User Node
«PDU»	«PDU»
: ~Command	: Command

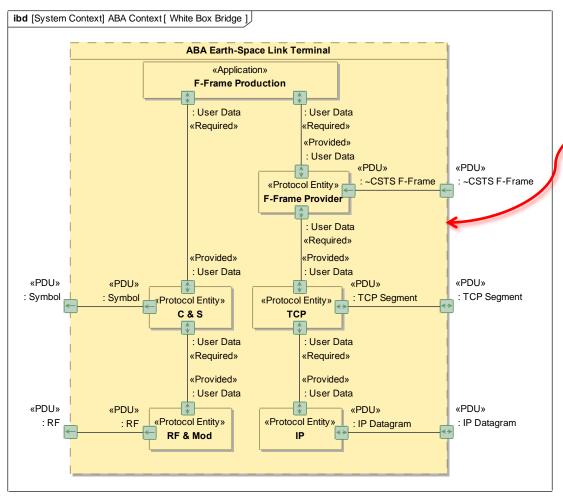
- Transition to a different example, in SysML notation.
- Send a command from the Earth node to the Space node (right to left).
- This is the logical connection.
- In this example, not only are there layers below, but intermediate systems that appear only at the lower layers.
- This is a Black Box view in the sense that we see no internals of the Space or Earth nodes.
- Intent is to describe connections between systems.

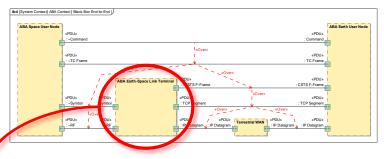
A Tale of Two Boxes – Black


Box

- Correspondence between upper and lower layers (red arrows).
- Layering changes, ground only vs. flight-ground.
 - More detail in flight-ground portion.
- A higher layer might have several possible sets of lower layers.
- A lower layer might carry several higher layers.
- Allows analysis of interaction between higher layers.
 - e.g. command and telemetry over the same TCP link.

A Tale of Two Boxes – White

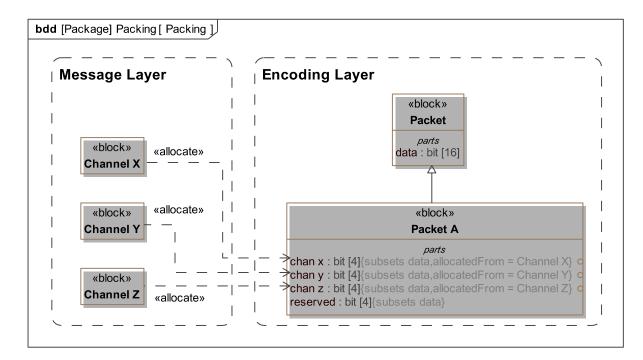



- Look inside Space and Earth nodes at top two layers.
- Sub-components that implement each layer.
- Vertical communication between sub-components within Earth and Space nodes.
- Correspondence of «Over» dependencies with vertical communication.
- Rules for how sub-components can be stacked vertically, i.e.
 which are compatible.

international symposium

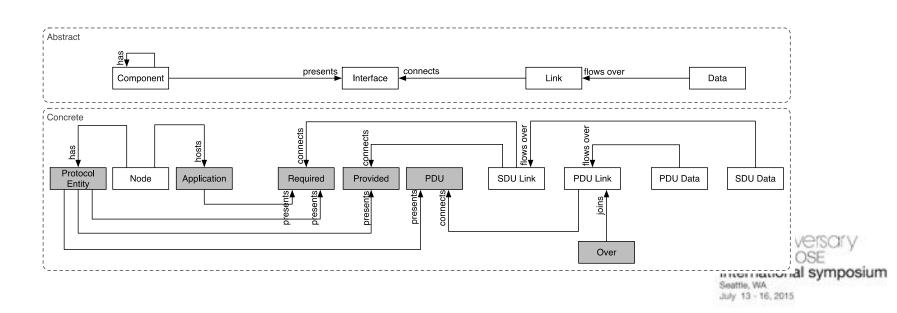
Seattle, WA July 13 - 16, 2015

Another White Box


- This Link Terminal functions as a converter between two stacks.
- F-Frame Production component does the translation.
- It bridges the two stacks.

Data Encoding

- As data goes between two systems it is *exchanged*.
- As data goes between a lower layer and an upper layer within a system it is *transformed*.
- Useful to model that transformation.
- How physical measurements are placed in a packet.



Modeling Pattern

INCOSE

- For the modeling nerds among you.
- Defined an abstract and concrete set of terms and relationships.
 - Component, Interface, Link and Data.
 - SDU Service Data Unit (vertical flow within component)
 - PDU Protocol Data Unit (horizontal flow between components)
- Data can be interpreted to mean anything that is exchanged, including physical material.

Extension to Other Domains

- Can this model be applied to other kinds of interfaces, e.g. electrical, mechanical, thermal, etc?
- Perhaps there is potential.
- For example, an electrical interface might have a signal (voltage and current over time) at an upper layer, and a wire at a lower.
- Conversely, a thermal interface exists between two components if they exchange heat.
- But, the lower level that supports that exchange might be
 - Physical connection in case of conduction.
 - An intermediary substance in case of *convection*.
 - Simple line of sight in case of radiative transfer.

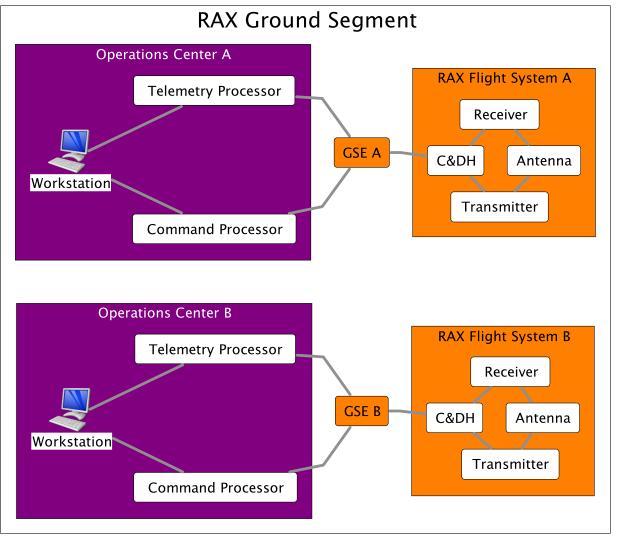
Four Layer Structure

- OSI definition of seven layers has worked in domain of computer networking.
- Other domains may need different choice and number of layers.
- Simple, four layers of abstraction for traditional engineering systems.
 - Message, Encoding, Signal and Physical
- Message is end-to-end.
- Lower layers may have different realizations along their paths.

Example	Message	Encoding	Signal	Physical
Document Transfer	Document	PDF file	HTTP stack	Ethernet
Automobile	Stop cor	Brake pedal	Hydraulic	Brake caliper
Automobile	Stop car	pressure	pressure	pressure
Air	Degine 69E	Thermostat	Electrical	Compressor 25
Conditioner	Desire 68F	setting	Signal	on 25

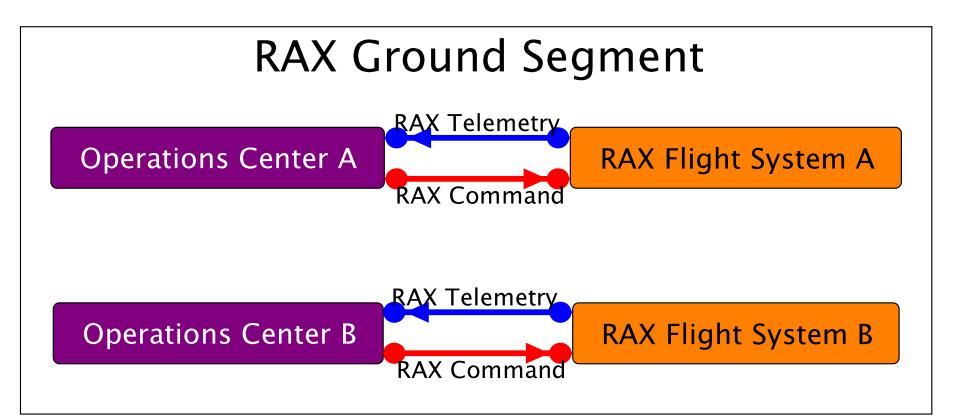
International symposium Seattle, WA July 13 - 16, 2015

An Example With Graph


Analysis

- Graph Analysis could be a fundamental tool for systems engineers in an MBSE environment.
- In these examples, we're using it to specify the physical path for a logical flow from among several possibilities.
- This example has just two layers (logical and physical), but concept is easily extended to many.
- In this hypothetical example, we suppose two operations centers and two spacecraft.
- We then show the data flows between the operations centers and the spacecraft in two different mission phases, ATLO prelaunch, and Flight post-launch.
- These routes are *derived entities* that do not *necessarily* exist in the model might be stored as characterizations if needed.

25th anniversary annual INCOSE international symposium Seattle, WA July 13 - 16, 2015

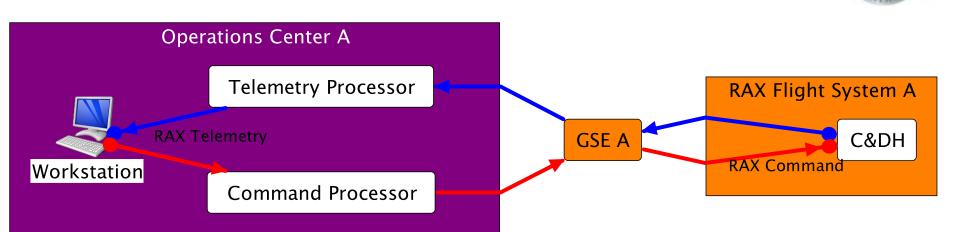

Physical Layer Pre-Launch

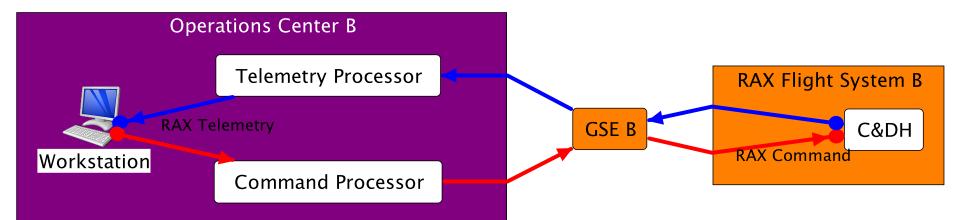
- Operations Center A is connected to Flight System A, and B to B.
- GSE = Ground
 Support
 Equipment.
- C&DH = Command and Data Handling System.

Seattle, WA July 13 - 16, 2015

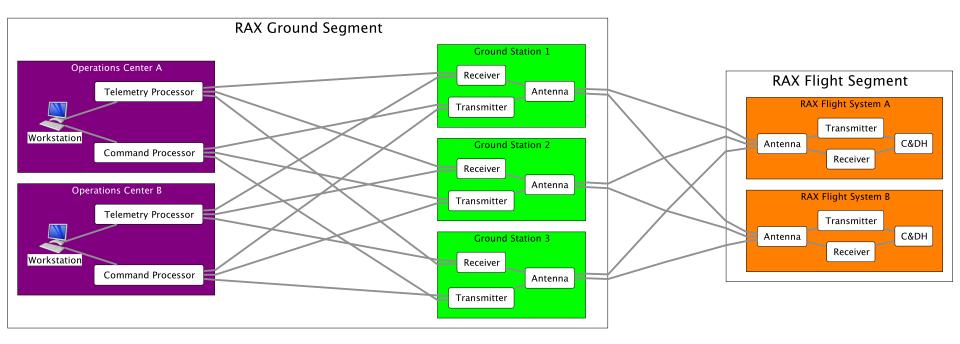
Logical Layer Pre-Launch

- Ops Center A sends commands to Flight Sys A, and receives telemetry.
- Same for B and B.




Routing Constraints Pre-Launch

Routing Pre-Launch

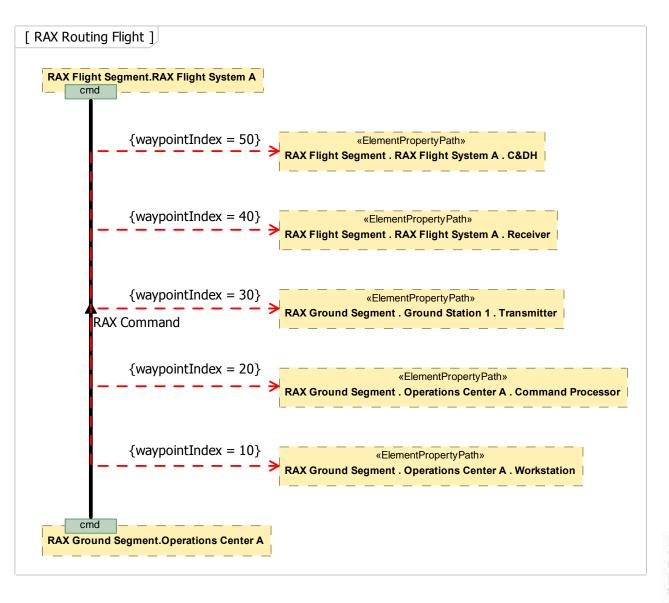


- Route specified with «xferdOver» dependencies.
- *Many* other mechanisms are conceivable based on properties and requirements of the connections.
 - Data type, data volume, bandwidth, latency, security etc.

25th anniversary annual INCOSE international symposium Seattle, WA July 13 - 16, 2015

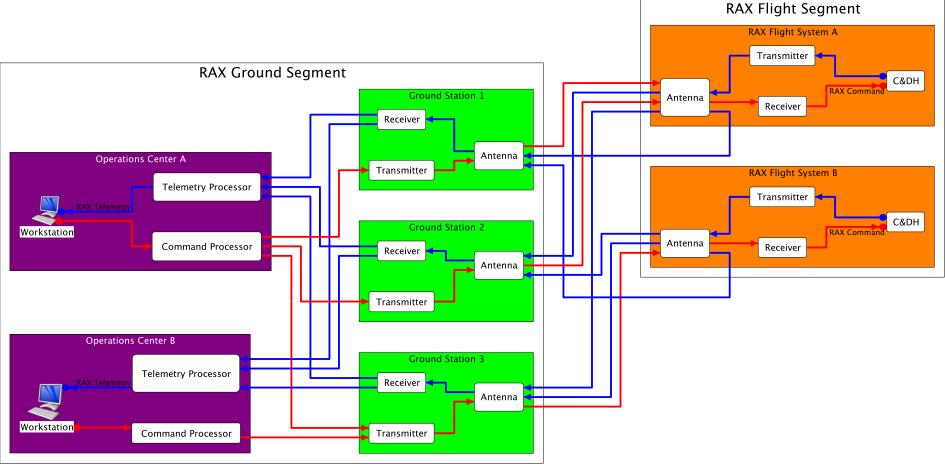
Physical Layer Flight

- Spacecraft are now in flight, no longer on ground.
- Three Ground Stations replace the GSE.



Logical Layer Flight RAX Ground Segment **RAX Flight Segment RAX** Telemetry RAX Command **RAX Flight System A Operations Center A RAX** Telemetry **RAX** Telemetry RAX Command **RAX Flight System B RAX** Command **RAX** Telemetry **Operations Center B**

- Logical flows are different.
- Each Operations Center gets telemetry from each Spacecraft.
- Operations Center A can command either Spacecraft.
- Operations Center B can only command Spacecraft B.


Routing Constraints Flight

25th anniversary annual INCOSE international symposium seattle, WA Judy 13 - 16, 2015

Routing Flight

- Further constraints on which Ground Stations are used in which combinations.
- Note routing over telemetry processors, command processors, receivers and transmitters.

25th anniversary annual INCOSE international symposium Seattle, WA July 13 - 16, 2015

Textual Representation of

Routes

	Physical Component	Exchanges Data With	Physical Component		
1	RAX Ground Segment . Operations Center A	> RAX Command	RAX Ground Segment . RAX Flight System A		
	Physical Route RAX Ground Segment . Operations Center A . Workstation RAX Ground Segment . Operations Center A . Command Processor RAX Ground Segment . GSE A RAX Ground Segment . RAX Flight System A . C&DH Number of Routes = 1				
Ī	Physical Component	Exchanges Data With	Physical Component		
	RAX Ground Segment . Operations Center A	A1A cmd > RAX Command	RAX Flight Segment . RAX Flight System A		
			System 11		
	Physical Route RAX Ground Segment . Operations Center RAX Ground Segment . Operations Center RAX Ground Segment . Ground Station 1 RAX Ground Segment . Ground Station 1 RAX Flight Segment . RAX Flight System RAX Flight Segment . RAX Flight System RAX Flight Segment . RAX Flight System	er A . Workstation er A . Command Proces 1 . Transmitter 1 . Antenna m A . Antenna m A . Receiver			

onnual INCOSE international symposium Seattle, WA July 13 - 16, 2015

ersarv

Conclusions

- Conversation within Systems Engineering community.
- Multi-layer approach is useful and broadly applicable.
- Build frameworks for other engineering domains.
 - Electrical, mechanical, thermal, etc.
 - Define layers of abstraction.
 - Concerns, Viewpoints and Views.
 - Relate to traditional domain-specific CAD and analysis tools.
- What new analyses does this approach enable?
- How to project such models into useful views?
- What questions can we now answer better?

Acknowledgements

Thanks to

- Sandy Friedenthal

– Kim Simpson

